One of the earliest models of weak randomness is the Chor-Goldreich (CG) source. A (t,n,k)- CG source is a sequence of random variables X =(x1,…,xt)∼({0,1}n)t, where each Xi has min-entropy k conditioned on any fixing of x1,…,xi−1. Chor and Goldreich proved that there is no deterministic way to extract randomness from such a source. Nevertheless, Doron, Moshkovitz, Oh, and Zuckerman showed that there is a deterministic way to condense a CG source into a string with small entropy gap. They gave applications of such a condenser to simulating randomized algorithms with small error and to certain cryptographic tasks. They studied the case where the block length n and entropy rate k/n are both constant. We study the much more general setting where the block length can be arbitrarily large, and the entropy rate can be arbitrarily small. We construct the first explicit condenser for CG sources in this setting, and it can be instantiated in a number of different ways. When the entropy rate of the CG source is constant, our condenser requires just a constant number of blocks t to produce an output with entropy rate 0.9, say. In the low entropy regime, using t=poly(n) blocks, our condenser can achieve output entropy rate 0.9 even if each block has just 1 bit of min-entropy. Moreover, these condensers have exponentially small error. Finally, we provide strong existential and impossibility results. For our existential result, we show that a random function is a seedless condenser (with surprisingly strong parameters) for any small family of sources. As a corollary, we get new existential results for seeded condensers and condensers for CG sources. For our impossibility result, we show the latter result is nearly tight, by giving a simple proof that the output of any condenser for CG sources must inherit the entropy gap of (one block of) its input.
more »
« less
Almost Chor-Goldreich Sources and Adversarial Random Walks
A Chor–Goldreich (CG) source is a sequence of random variables X = X1 ∘ … ∘ Xt, where each Xi ∼ {0,1}d and Xi has δ d min-entropy conditioned on any fixing of X1 ∘ … ∘ Xi−1. The parameter 0<δ≤ 1 is the entropy rate of the source. We typically think of d as constant and t as growing. We extend this notion in several ways, defining almost CG sources. Most notably, we allow each Xi to only have conditional Shannon entropy δ d. We achieve pseudorandomness results for almost CG sources which were not known to hold even for standard CG sources, and even for the weaker model of Santha–Vazirani sources: We construct a deterministic condenser that on input X, outputs a distribution which is close to having constant entropy gap, namely a distribution Z ∼ {0,1}m for m ≈ δ dt with min-entropy m−O(1). Therefore, we can simulate any randomized algorithm with small failure probability using almost CG sources with no multiplicative slowdown. This result extends to randomized protocols as well, and any setting in which we cannot simply cycle over all seeds, and a “one-shot” simulation is needed. Moreover, our construction works in an online manner, since it is based on random walks on expanders. Our main technical contribution is a novel analysis of random walks, which should be of independent interest. We analyze walks with adversarially correlated steps, each step being entropy-deficient, on good enough lossless expanders. We prove that such walks (or certain interleaved walks on two expanders), starting from a fixed vertex and walking according to X1∘ … ∘ Xt, accumulate most of the entropy in X.
more »
« less
- PAR ID:
- 10484416
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- Proceedings of the annual ACM Symposium on Theory of Computing
- ISSN:
- 0737-8017
- ISBN:
- 9781450399135
- Page Range / eLocation ID:
- 1 to 9
- Subject(s) / Keyword(s):
- condensers, expander Graphs, extractors, random Walks, randomized algorithm, Santha–Vazirani sources
- Format(s):
- Medium: X
- Location:
- Orlando FL USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While the existence of randomness extractors, both seeded and seedless, has been studied for many sources of randomness, currently, not much is known regarding the existence of seedless condensers in many settings. Here, we prove several new results for seedless condensers in the context of three related classes of sources: Non-Oblivious Symbol Fixing (NOSF) sources, online NOSF (oNOSF) sources (originally defined as SHELA sources in \cite{aggarwal_how_2020}), and almost Chor-Goldreich (CG) sources as defined in \cite{doron_almost_2023}. We will think of these sources as a sequence of random variables $$\mathbf{X}=\mathbf{X}_1,\dots,\mathbf{X}_\ell$$ on $$\ell$$ symbols where at least $$g$$ out of these $$\ell$$ symbols are ``good'' (i.e., have some min-entropy requirement), denoted as a $$(g,\ell)$$-source, and the remaining ``bad'' $$\ell-g$$ symbols may adversarially depend on these $$g$$ good blocks. The difference between each of these sources is realized by restrictions on the power of the adversary, with the adversary in NOSF sources having no restrictions. Prior to our work, the only known seedless condenser upper or lower bound in these settings is due to \cite{doron_almost_2023}, where they explicitly construct a seedless condenser for a restricted subset of $$(g,\ell)$$-adversarial CG sources. The following are our main results concerning seedless condensers for each of these sources. \begin{enumerate} \item oNOSF sources \begin{enumerate} \item When $$g\leq\ell/2$, we prove that condensing with error 0.99 above rate $$\frac{1}{\lfloor \ell/g \rfloor}$$ is impossible. In fact, we show that this is tight. \item Quite surprisingly, for $$g> \ell/2$$, we show the existence of excellent condensers for uniform oNOSF sources. In addition, we show the existence of similar condensers for oNOSF sources with only logarithmic min-entropy. Our results are based on a new type of two-source extractors, called \emph{output-light two-source extractors}, that we introduce and prove the existence of. \end{enumerate} \item Adversarial CG sources \begin{enumerate} \item We observe that uniform adversarial CG sources are equivalent to uniform oNOSF sources and consequently inherit the same results. \item We show that one cannot condense beyond the min-entropy gap of each block or condense low min-entropy CG sources above rate $1/2$$. \end{enumerate} \item NOSF sources \begin{enumerate} \item We show that condensing with constant error above rate $$\frac{g}{\ell}$ is impossible for uniform NOSF sources for any $$g$$ and $$\ell$$, thus ruling out the possibility of any non-trivial condensing. This shows an interesting distinction between NOSF and oNOSF sources. \end{enumerate} \end{enumerate}more » « less
-
A function f∶{0,1}n→ {0,1} is called an approximate AND-homomorphism if choosing x,y∈n uniformly at random, we have that f(x∧ y) = f(x)∧ f(y) with probability at least 1−ε, where x∧ y = (x1∧ y1,…,xn∧ yn). We prove that if f∶ {0,1}n → {0,1} is an approximate AND-homomorphism, then f is δ-close to either a constant function or an AND function, where δ(ε) → 0 as ε→ 0. This improves on a result of Nehama, who proved a similar statement in which δ depends on n. Our theorem implies a strong result on judgement aggregation in computational social choice. In the language of social choice, our result shows that if f is ε-close to satisfying judgement aggregation, then it is δ(ε)-close to an oligarchy (the name for the AND function in social choice theory). This improves on Nehama’s result, in which δ decays polynomially with n. Our result follows from a more general one, in which we characterize approximate solutions to the eigenvalue equation f = λ g, where is the downwards noise operator f(x) = y[f(x ∧ y)], f is [0,1]-valued, and g is {0,1}-valued. We identify all exact solutions to this equation, and show that any approximate solution in which f and λ g are close is close to an exact solution.more » « less
-
The noise sensitivity of a Boolean function f: {0,1}^n - > {0,1} is one of its fundamental properties. For noise parameter delta, the noise sensitivity is denoted as NS_{delta}[f]. This quantity is defined as follows: First, pick x = (x_1,...,x_n) uniformly at random from {0,1}^n, then pick z by flipping each x_i independently with probability delta. NS_{delta}[f] is defined to equal Pr [f(x) != f(z)]. Much of the existing literature on noise sensitivity explores the following two directions: (1) Showing that functions with low noise-sensitivity are structured in certain ways. (2) Mathematically showing that certain classes of functions have low noise sensitivity. Combined, these two research directions show that certain classes of functions have low noise sensitivity and therefore have useful structure. The fundamental importance of noise sensitivity, together with this wealth of structural results, motivates the algorithmic question of approximating NS_{delta}[f] given an oracle access to the function f. We show that the standard sampling approach is essentially optimal for general Boolean functions. Therefore, we focus on estimating the noise sensitivity of monotone functions, which form an important subclass of Boolean functions, since many functions of interest are either monotone or can be simply transformed into a monotone function (for example the class of unate functions consists of all the functions that can be made monotone by reorienting some of their coordinates [O'Donnell, 2014]). Specifically, we study the algorithmic problem of approximating NS_{delta}[f] for monotone f, given the promise that NS_{delta}[f] >= 1/n^{C} for constant C, and for delta in the range 1/n <= delta <= 1/2. For such f and delta, we give a randomized algorithm performing O((min(1,sqrt{n} delta log^{1.5} n))/(NS_{delta}[f]) poly (1/epsilon)) queries and approximating NS_{delta}[f] to within a multiplicative factor of (1 +/- epsilon). Given the same constraints on f and delta, we also prove a lower bound of Omega((min(1,sqrt{n} delta))/(NS_{delta}[f] * n^{xi})) on the query complexity of any algorithm that approximates NS_{delta}[f] to within any constant factor, where xi can be any positive constant. Thus, our algorithm's query complexity is close to optimal in terms of its dependence on n. We introduce a novel descending-ascending view of noise sensitivity, and use it as a central tool for the analysis of our algorithm. To prove lower bounds on query complexity, we develop a technique that reduces computational questions about query complexity to combinatorial questions about the existence of "thin" functions with certain properties. The existence of such "thin" functions is proved using the probabilistic method. These techniques also yield new lower bounds on the query complexity of approximating other fundamental properties of Boolean functions: the total influence and the bias.more » « less
-
Braverman, Mark (Ed.)For an abelian group H acting on the set [𝓁], an (H,𝓁)-lift of a graph G₀ is a graph obtained by replacing each vertex by 𝓁 copies, and each edge by a matching corresponding to the action of an element of H. Expanding graphs obtained via abelian lifts, form a key ingredient in the recent breakthrough constructions of quantum LDPC codes, (implicitly) in the fiber bundle codes by Hastings, Haah and O'Donnell [STOC 2021] achieving distance Ω̃(N^{3/5}), and in those by Panteleev and Kalachev [IEEE Trans. Inf. Theory 2021] of distance Ω(N/log(N)). However, both these constructions are non-explicit. In particular, the latter relies on a randomized construction of expander graphs via abelian lifts by Agarwal et al. [SIAM J. Discrete Math 2019]. In this work, we show the following explicit constructions of expanders obtained via abelian lifts. For every (transitive) abelian group H ⩽ Sym(𝓁), constant degree d ≥ 3 and ε > 0, we construct explicit d-regular expander graphs G obtained from an (H,𝓁)-lift of a (suitable) base n-vertex expander G₀ with the following parameters: ii) λ(G) ≤ 2√{d-1} + ε, for any lift size 𝓁 ≤ 2^{n^{δ}} where δ = δ(d,ε), iii) λ(G) ≤ ε ⋅ d, for any lift size 𝓁 ≤ 2^{n^{δ₀}} for a fixed δ₀ > 0, when d ≥ d₀(ε), or iv) λ(G) ≤ Õ(√d), for lift size "exactly" 𝓁 = 2^{Θ(n)}. As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev of almost linear distance (and also in a wide range of parameters) and explicit classical quasi-cyclic LDPC codes with wide range of circulant sizes. Items (i) and (ii) above are obtained by extending the techniques of Mohanty, O'Donnell and Paredes [STOC 2020] for 2-lifts to much larger abelian lift sizes (as a byproduct simplifying their construction). This is done by providing a new encoding of special walks arising in the trace power method, carefully "compressing" depth-first search traversals. Result (iii) is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the expense of polylog factors in the expansion.more » « less
An official website of the United States government

