https://peer.asee.org/27950
This paper presents results of work completed on our project, Intersectionality of Non-normative Identities in the Cultures of Engineering (InIce). The overarching focus of this project is on how students who hold non-normative identities position themselves, grow through their education, and navigate the cultures of engineering they experience in college. Our goal is to investigate ways to engage students who hold non-normative identities to become more active and lifelong participants in engineering disciplines. Our work is proceeding in three phases: 1) Identify, through a quantitative instrument, the attitudinal profiles of normative and non-normative students in engineering; 2) Characterize students’ normative and non-normative identities through in-depth interviews and analysis of differences between students with normative and non-normative identities in engineering; and 3) Drawing from our findings, develop a workshop and set of courses to incorporate diversity topics into engineering programs to enhance the culture of engineering to be more responsive towards, and inclusive of, a diverse range of student identities. We have completed the first phase of the project in which we quantitatively measured and characterized student groups with normative and non-normative identities in engineering. Our definitions of normative and non-normative for this project are developed through Topological Data Analysis (TDA) of a set of multi-institution survey data (n = 2916). TDA allows identification of groups without imposing a priori hypotheses on how the attitudes of students may group together (nor how they may distinguish between demographic groups). This approach allows the underlying structure of the data to emerge rather than imposing pre-defined definitions of normative attitudes or identities. Our TDA results revealed one group that contains a relatively large number of students (the “normative” group) and a total of seven other distinct, but relatively populated, groups (the “non-normative” groups). We have compiled a summary of the most salient attitudinal constructs in terms of characterizing and distinguishing between all these groups including: motivation (value, goal orientation, future time perspective), engineering and physics identities (performance/competence and recognition beliefs for each), personality traits (neuroticism, extraversion, belongingness) and grit (consistency of interest). We are currently in Phase 2 of our study in which we are conducting a series of qualitative, longitudinal interviews with students selected from normative and non-normative groups to understand how they navigate their engineering experiences and define their educational trajectories over the first two years of college. This data will be deductively analyzed based on our existing attitudinal frameworks as well as inductively coded for emerging themes on how students feel belongingness within engineering culture. This project promises to move traditional measures of demographic data beyond socially constructed perceptions of others and allows for the representation of student diversity from the perspective of each participant. This more accurate reflection of diversity provides novel insight into the experiences of students who might otherwise be ignored or unjustifiably lumped in with other students with whom they share some demographic indicator and how residing at the intersection of multiple measures of diversity can influence students’ experiences in engineering culture.
more »
« less
Intersectionality of Non-normative Identities in the Cultures of Engineering
Traditionally, engineering culture has limited rather than fostered diversity in engineering. To address this persistent issue, we examine how diverse students identify with engineering and navigate the culture of engineering. We define diversity not by making a priori categorizations according to traditional demographic information (e.g., race, gender, sexual orientation, etc.), but instead by investigating the variation in students’ attitudinal profiles on a host of affective measures. Using these measures, we develop an identification of large, “normative” groups of engineers as well as “non-normative” students who emerge as having distinct attitudinal profiles. This mixed methods study investigates the intersectionality of engineering students' personal identities to understand: How do non-normative groups in engineering form an engineering identity and navigate a culture dominated by limited diversity?
The focus of this paper is on the first phase this project, in which students' identities, motivation, psychological traits, perceived supports and barriers to engineering, and other background information is being quantitatively assessed. Pilot survey data were collected from participants enrolled in second semester first-year engineering programs across three institutions (n=374). We used topological data analysis (TDA) to create normative and non-normative attitudinal profiles of respondents. As a relatively new and powerful set of analytic methods, TDA clusters variegated data to understand an underlying structure, or topology, which emerges from the data. Our preliminary results show definite patterns which we then break down according to students' self-identified demographics. Additionally, a subset of participants who completed our quantitative instrument were interviewed about their experiences in and identification with engineering (n=7). Initial qualitative data analysis indicate that students who reside at intersectional boundaries of diversity have difficulty finding similar role models in engineering and often find themselves expending additional effort when compared to their peers to establish themselves in both engineering and non-engineering communities. Results of this quantitative and qualitative work were used to further refine the quantitative instrument that is to be used in subsequent phases of the project.
more »
« less
- Award ID(s):
- 1428689
- NSF-PAR ID:
- 10042265
- Date Published:
- Journal Name:
- ASEE Annual Conference & Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract During their engineering programs, undergraduate students participate in the culture of engineering education to make meaning of themselves as they form professional identities. In this paper, we draw from Holland and colleagues’ theory of identity, agency, and figured worlds to further understand how undergraduate students make meaning of their identities as they participate in the figured world of engineering education. Our thematic narrative analysis revealed two types of narratives: (1) Narratives of Coherence that highlight the ways participants reconfigure normative identity roles in figured worlds to make space for their minoritized identities within engineering education, and (2) Narratives of Separation where participants maintain normative identity roles by either intentionally or unintentionally separating their minoritized identities from engineering activities. These findings point to strategies of perspective-building for supporting students and providing opportunities for contributing to a broader culture of inclusion in engineering classrooms.more » « less
-
https://peer.asee.org/28248 The research draws from a larger study conducted at four large public universities examining the non-normative attitudes of first-year engineering students and how these attitudes might affect their collegiate experience and the development of their engineering identity. Within the survey demographics section, students were asked to report their gender with as many options as they felt appropriate to describe themselves. Students were given the option to respond “male,” “female,” “cisgender,” “transgender,” “agender,” “genderqueer,” and/or “a gender not listed.” Of the students surveyed, 2,697 identified themselves as male or female. Of this population, 55 students additionally identified themselves as cisgender. A Welch’s t-test revealed that factors relating to engineering identity were significantly different between cisgender students who self-identified and those who did not. Self-identified cisgender students possessed higher scores on factors measuring components of engineering identity, such as Physics Performance/Competence beliefs (p = 0.001, Cohen’s d = 0.412). These students were also rated as higher on Openness from the “Big 5” personality measures (p = 0.006, Cohen’s d = 0.403), and scored significantly lower on Conscientiousness from the “Big 5” personality measures (p = 0.028, Cohen’s d = 0.343). These data highlight the differences between cisgender identified and non-identified students. Higher Openness results indicate that cisgender students are significantly more attentive of individuals’ inner feelings and may seek out more variety in their experiences than their non-cis-identified peers. Lower Conscientiousness scores reveal that cisgender students, on average, are less likely to conform to traditional cultural norms. Additionally, stronger scores relating to engineering identity indicate that cisgender-identified students feel that they belong in engineering. Together, these findings suggest that cisgender students possess traits and attitudes that could position them as ambassadors to or changemakers within engineering culture. Future research will work to understand these differences qualitatively to inform ways in which these individuals may serve as allies or “bridgers” for individuals within engineering who do not conform to gender and sexual orientation binaries.more » « less
-
High levels of stress and anxiety are common amongst college students, particularly engineering students. Students report lack of sleep, grades, competition, change in lifestyle, and other significant stressors throughout their undergraduate education (1, 2). Stress and anxiety have been shown to negatively impact student experience (3-6), academic performance (6-8), and retention (9). Previous studies have focused on identifying factors that cause individual students stress while completing undergraduate engineering degree programs (1). However, it not well-understood how a culture of stress is perceived and is propagated in engineering programs or how this culture impacts student levels of identification with engineering. Further, the impact of student stress has not been directly considered in engineering regarding recruitment, retention, and success. Therefore, our guiding research question is: Does the engineering culture create stress for students that hinder their engineering identity development? To answer our research question, we designed a sequential mixed methods study with equal priority of quantitative survey data and qualitative individual interviews. Our study participants are undergraduate engineering students across all levels and majors at a large, public university. Our sample goal is 2000 engineering student respondents. We combined three published surveys to build our quantitative data collection instrument, including the Depression Anxiety Stress Scales (DASS), Identification with engineering subscale, and Engineering Department Inclusion Level subscale. The objective of the quantitative instrument is to illuminate individual perceptions of the existence of an engineering stress culture (ESC) and create an efficient tool to measure the impact ESC on engineering identity development. Specifically, we seek to understand the relationships among the following constructs; 1) identification with engineering, 2) stress and anxiety, and 3) feelings of inclusion within their department. The focus of this paper presents the results of the pilot of the proposed instrument with 20 participants and a detailed data collection and analysis process. In an effort to validate our instrument, we conducted a pilot study to refine our data collection process and the results will guide the data collection for the larger study. In addition to identifying relationships among construct, the survey data will be further analyzed to specify which demographics are mediating or moderating factors of these relationships. For example, does a student’s 1st generation status influence their perception of stress or engineering identity development? Our analysis may identify discipline-specific stressors and characterize culture components that promote student anxiety and stress. Our objective is to validate our survey instrument and use it to inform the protocol for the follow-up interviews to gain a deeper understanding of the responses to the survey instrument. Understanding what students view as stressful and how students identify stress as an element of program culture will support the development of interventions to mitigate student stress. References 1. Schneider L (2007) Perceived stress among engineering students. A Paper Presented at St. Lawrence Section Conference. Toronto, Canada. Retrieved from: www. asee. morrisville. edu. 2. Ross SE, Niebling BC, & Heckert TM (1999) Sources of stress among college students. Social psychology 61(5):841-846. 3. Goldman CS & Wong EH (1997) Stress and the college student. Education 117(4):604-611. 4. Hudd SS, et al. (2000) Stress at college: Effects on health habits, health status and self-esteem. College Student Journal 34(2):217-228. 5. Macgeorge EL, Samter W, & Gillihan SJ (2005) Academic Stress, Supportive Communication, and Health A version of this paper was presented at the 2005 International Communication Association convention in New York City. Communication Education 54(4):365-372. 6. Burt KB & Paysnick AA (2014) Identity, stress, and behavioral and emotional problems in undergraduates: Evidence for interaction effects. Journal of college student development 55(4):368-384. 7. Felsten G & Wilcox K (1992) Influences of stress and situation-specific mastery beliefs and satisfaction with social support on well-being and academic performance. Psychological Reports 70(1):291-303. 8. Pritchard ME & Wilson GS (2003) Using emotional and social factors to predict student success. Journal of college student development 44(1):18-28. 9. Zhang Z & RiCharde RS (1998) Prediction and Analysis of Freshman Retention. AIR 1998 Annual Forum Paper.more » « less
-
Grinnell, Frederick (Ed.)Queer identities are often ignored in diversity initiatives, yet there is a growing body of research that describes notable heterosexist and gender-normative expectations in STEM that lead to unsupportive and discriminatory environments and to the lower persistence of queer individuals. Research on the experiences of queer-spectrum individuals is limited by current demographic practices. In surveys that are queer-inclusive there is no consensus on best practices, and individuals with queer genders and queer sexual, romantic, and related orientations are often lumped together in a general category (e.g. LGBTQ+). We developed two queer-inclusive demographics questions and administered them as part of a larger study in undergraduate engineering and computer science classes (n = 3698), to determine which of three survey types for gender (conventional, queered, open-ended) provided the most robust data and compared responses to national data to determine if students with queer genders and/or queer sexual, romantic, and related orientations were underrepresented in engineering and computer science programs. The gender survey with queer-identity options provided the most robust data, as measured by higher response rates and relatively high rates of disclosing queer identities. The conventional survey (male, female, other) had significantly fewer students disclose queer identities, and the open-ended survey had a significantly higher non-response rate. Allowing for multiple responses on the survey was important: 78% of those with queer gender identities and 9% of those with queer sexual, romantic and related orientations selected multiple identities within the same survey question. Queer students in our study were underrepresented relative to national data. Students who disclosed queer gender identities were 7/100ths of the expected number, and those with queer orientations were under-represented by one-quarter. Further work developing a research-based queered demographics instrument is needed for larger-scale changes in demographics practices, which will help others identify and address barriers that queer-spectrum individuals face in STEM.more » « less