In this paper we derive the best constant for the following -type Gagliardo-Nirenberg interpolation inequality where parameters and satisfy the conditions , . The best constant is given by where is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when for any real numbers , and . In fact, the generalized Lane-Emden equation in contains a delta function as a source and it is a Thomas-Fermi type equation. For or , have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that and as for , where and are the function achieving equality and the best constant of -type Gagliardo-Nirenberg interpolation inequality, respectively.
more »
« less
The reduced ring of the π
π(πΆβ)-graded πΆβ-equivariant stable stems
We describe in terms of generators and relations the ring structure of the -graded -equivariant stable stems modulo the ideal of all nilpotent elements. As a consequence, we also record the ring structure of the homotopy groups of the rational -equivariant sphere .
more »
« less
- PAR ID:
- 10484474
- Publisher / Repository:
- American Mathematical Society (AMS)
- Date Published:
- Journal Name:
- Proceedings of the American Mathematical Society, Series B
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2330-1511
- Format(s):
- Medium: X Size: p. 1-14
- Size(s):
- p. 1-14
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We develop a higher semiadditive version of Grothendieck-Witt theory. We then apply the theory in the case of a finite field to study the higher semiadditive structure of the -local sphere at the prime , in particular realizing the non- -adic rational element as a βsemiadditive cardinality.β As a further application, we compute and clarify certain power operations in .more » « less
-
We introduce the notions of symmetric and symmetrizable representations of . The linear representations of arising from modular tensor categories are symmetric and have congruence kernel. Conversely, one may also reconstruct modular data from finite-dimensional symmetric, congruence representations of . By investigating a -symmetry of some Weil representations at prime power levels, we prove that all finite-dimensional congruence representations of are symmetrizable. We also provide examples of unsymmetrizable noncongruence representations of that are subrepresentations of a symmetric one.more » « less
-
We show that for any even log-concave probability measure on , any pair of symmetric convex sets and , and any , where . This constitutes progress towards the dimensional Brunn-Minkowski conjecture (see Richard J. Gardner and Artem Zvavitch [Tran. Amer. Math. Soc. 362 (2010), pp. 5333β5353]; Andrea Colesanti, Galyna V. Livshyts, Arnaud Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120β1139]). Moreover, our bound improves for various special classes of log-concave measures.more » « less
-
By discretizing an argument of Kislyakov, Naor and Schechtman proved that the 1-Wasserstein metric over the planar grid has -distortion bounded below by a constant multiple of . We provide a new βdimensionalityβ interpretation of Kislyakovβs argument, showing that if is a sequence of graphs whose isoperimetric dimension and Lipschitz-spectral dimension equal a common number , then the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . We proceed to compute these dimensions for -powers of certain graphs. In particular, we get that the sequence of diamond graphs has isoperimetric dimension and Lipschitz-spectral dimension equal to 2, obtaining as a corollary that the 1-Wasserstein metric over has -distortion bounded below by a constant multiple of . This answers a question of Dilworth, Kutzarova, and Ostrovskii and exhibits only the third sequence of -embeddable graphs whose sequence of 1-Wasserstein metrics is not -embeddable.more » « less