skip to main content


Title: Perovskite‐Derived Layered Crystal Structure in SrCo 0.26 Fe 0.74 O 3‐δ Thin Films
Abstract

Oxygen coordination and vacancy ordering play an important role in dictating the functionality of complex oxides. In this work, an unconventional layering of oxygen ions in a mixed conductor SrCo1‐xFexO3‐δ(SCFO) thin film grown epitaxially on SrTiO3(STO) is reported. Scanning transmission electron microscopy (STEM) reveals alternating layers of oxygen deficiency along the growth direction, with the oxygen‐rich layer correlated with the neighboring Co,Fe‐site intensity, and contraction of the Sr–Sr distance. Density functional theory (DFT) calculations and STEM image simulations support the emergence of periodic (Co,Fe)O6and (Co,Fe)O4/(Co,Fe)O5layers, an ordering that is also sensitive to the Co:Fe ratio.

 
more » « less
Award ID(s):
2132623
NSF-PAR ID:
10484557
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Interfaces
Volume:
11
Issue:
7
ISSN:
2196-7350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chemical looping air separation (CLAS) is a promising technology for oxygen generation with high efficiency. The key challenge for CLAS is to design robust oxygen sorbents with suitable redox properties and fast redox kinetics. In this work, perovskite-structured Sr1-xCaxFe1-yCoyO3oxygen sorbents were investigated and demonstrated for oxygen production with tunable redox properties, high redox rate, and excellent thermal/steam stability. Cobalt doping at B site was found to be highly effective, 33% improvement in oxygen productivity was observed at 500 °C. Moreover, it stabilizes the perovskite structure and prevents phase segregation under pressure swing conditions in the presence of steam. Scalable synthesis of Sr0.8Ca0.2Fe0.4Co0.6O3oxygen sorbents was carried out through solid state reaction, co-precipitation, and sol-gel methods. Both co-precipitation and sol-gel methods are capable of producing Sr0.8Ca0.2Fe0.4Co0.6O3sorbents with satisfactory phase purity, high oxygen capacity, and fast redox kinetics. Large scale evaluation of Sr0.8Ca0.2Fe0.4Co0.6O3, using an automated CLAS testbed with over 300 g sorbent loading, further demonstrated the effectiveness of the oxygen sorbent to produce 95% pure O2with a satisfactory productivity of 0.04 gO2gsorbent−1h−1at 600 °C.

     
    more » « less
  2. Abstract

    Perovskites are promising oxygen carriers for solar‐driven thermochemical fuel production due to higher oxygen exchange capacity. Despite their higher fuel yield capacity, La0.6Sr0.4MnO3perovskite materials present slow CO2‐splitting kinetics compared with state‐of‐the‐art CeO2. In order to improve the CO production rates, the incorporation of Cr in La0.6Sr0.4MnO3is explored based on thermodynamic calculations that suggest an enhanced driving force toward CO2splitting at high temperatures for La0.6Sr0.4CrxMn1−xO3perovskites. Here, reported is a threefold faster CO fuel production for La0.6Sr0.4Cr0.85Mn0.15O3compared to conventional La0.6Sr0.4MnO3, and twofold faster than CeO2under isothermal redox cycling at 1400 °C, and high stability upon long‐term cycling without any evidence of microstructural degradation. The findings suggest that with the proper design in terms of transition metal ion doping, it is possible to adjust perovskite compositions and reactor conditions for improved solar‐to‐fuel thermochemical production under nonconventional solar‐driven thermochemical cycling schemes such as the here presented near isothermal operation.

     
    more » « less
  3. Abstract

    Solid–gas interactions at electrode surfaces determine the efficiency of solid‐oxide fuel cells and electrolyzers. Here, the correlation between surface–gas kinetics and the crystal orientation of perovskite electrodes is studied in the model system La0.8Sr0.2Co0.2Fe0.8O3. The gas‐exchange kinetics are characterized by synthesizing epitaxial half‐cell geometries where three single‐variant surfaces are produced [i.e., La0.8Sr0.2Co0.2Fe0.8O3/La0.9Sr0.1Ga0.95Mg0.05O3−δ/SrRuO3/SrTiO3(001), (110), and (111)]. Electrochemical impedance spectroscopy and electrical conductivity relaxation measurements reveal a strong surface‐orientation dependency of the gas‐exchange kinetics, wherein (111)‐oriented surfaces exhibit an activity >3‐times higher as compared to (001)‐oriented surfaces. Oxygen partial pressure ()‐dependent electrochemical impedance spectroscopy studies reveal that while the three surfaces have different gas‐exchange kinetics, the reaction mechanisms and rate‐limiting steps are the same (i.e., charge‐transfer to the diatomic oxygen species). First‐principles calculations suggest that the formation energy of vacancies and adsorption at the various surfaces is different and influenced by the surface polarity. Finally, synchrotron‐based, ambient‐pressure X‐ray spectroscopies reveal distinct electronic changes and surface chemistry among the different surface orientations. Taken together, thin‐film epitaxy provides an efficient approach to control and understand the electrode reactivity ultimately demonstrating that the (111)‐surface exhibits a high density of active surface sites which leads to higher activity.

     
    more » « less
  4. Sr(Ti 1−x Fe x )O 3−δ (STF) has recently been explored as an oxygen electrode for solid oxide electrochemical cells (SOCs). Model thin film electrode studies show oxygen surface exchange rates that generally improve with increasing Fe content when x < 0.5, and are comparable to the best Co-containing perovskite electrode materials. Recent results on porous electrodes with the specific composition Sr(Ti 0.3 Fe 0.7 )O 3−δ show excellent electrode performance and stability, but other compositions have not been tested. Here we report results for porous electrodes with a range of compositions from x = 0.5 to 0.9. The polarization resistance decreases with increasing Fe content up to x = 0.7, but increases for further increases in x . This results from the interaction of two effects – the oxygen solid state diffusion coefficient increases with increasing x , but the electrode surface area and surface oxygen exchange rate decrease due to increased sinterability and Sr surface segregation for the Fe-rich compositions. Symmetric cells showed no degradation during 1000 h life tests at 700 °C even at a current density of 1.5 A cm −2 , showing that all the STF electrode compositions worked stably in both fuel cell mode and electrolysis modes. The excellent stability may be explained by X-ray Photoelectron Spectroscopy (XPS) results showing that the amount of surface segregated Sr did not change during the long-term testing, and by relatively low polarization resistances that help avoid electrode delamination. 
    more » « less
  5. Abstract

    The instability of the surface chemistry in transition metal oxide perovskites is the main factor hindering the long-term durability of oxygen electrodes in solid oxide electrochemical cells. The instability of surface chemistry is mainly due to the segregation of A-site dopants from the lattice to the surface. Here we report that cathodic potential can remarkably improve the stability in oxygen reduction reaction and electrochemical activity, by decomposing the near-surface region of the perovskite phase in a porous electrode made of La1-xSrxCo1-xFexO3mixed with Sm0.2Ce0.8O1.9. Our approach combines X-ray photoelectron spectroscopy and secondary ion mass spectrometry for surface and sub-surface analysis. Formation of Ruddlesden-Popper phase is accompanied by suppression of the A-site dopant segregation, and exsolution of catalytically active Co particles onto the surface. These findings reveal the chemical and structural elements that maintain an active surface for oxygen reduction, and the cathodic potential is one way to generate these desirable chemistries.

     
    more » « less