skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-Destructive Infrared Thermographic Curing Analysis of Polymer Composites
Abstract Infrared (IR) thermography is a non-contact method of measuring temperature that analyzes the infrared radiation emitted by an object. Properties of polymer composites are heavily influenced by the filler material, filler size, and filler dispersion, and thus thermographic analysis can be a useful tool to determine the curing and filler dispersion. In this study, we investigated the curing mechanisms of polymer composites at the microscale by capturing real-time temperature using an IR Thermal Camera. Silicone polymers with fillers of Graphene, Graphite powder, Graphite flake, and Molybdenum disulfide (MoS2) were subsequently poured into a customized 3D printed mold for thermography. The nanocomposites were microscopically heated with a Nichrome resistance wire, and real-time surface temperatures were measured using different Softwares. This infrared thermal camera divides the target area into 640 × 480 pixels, allowing measurement and analysis of the sample with a resolution of 65 micrometers. Depending on the filler material, the temperature rises to a certain maximum point before curing, and once curing is complete, polymer composites exhibit a rapid temperature change indicating a transition from viscous fluid to solid. MoS2, Polydimethylsiloxane (PDMS) without filler, and PDMS with larger filler are ranked in order of maximum constant temperature. PDMS (without filler) cures in 500s, while PDMS-Graphene and PDMS Graphite Powder cure in about 800s. The curing time for PDMS Graphite flake is slightly longer (950s), while MoS2 is around 520s. Therefore, this technique can indicate the influence of fillers on the curing of composites at the microscale, which is difficult to achieve by conventional methods such as differential scanning calorimetry. This nondestructive, low-cost, fast infrared thermography can be used to analyze the properties of polymer composites with different fillers and dispersion qualities in a variety of applications including precision additive manufacturing and quality control of curable composite inks.  more » « less
Award ID(s):
2138574
PAR ID:
10484614
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
ISBN:
978-0-7918-8665-6
Format(s):
Medium: X
Location:
Columbus, Ohio, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Infrared thermography is a non-destructive technique that can be exploited in many fields including polymer composite investigation. Based on emissivity and thermal diffusivity variation; components, defects, and curing state of the composite can be identified. However, manual processing of thermal images that may contain significant artifacts, is prone to erroneous component and property determination. In this study, thermal images of different graphite/graphene-based polymer composites fabricated by hand, planetary, and batch mixing techniques were analyzed through an automatic machine learning model. Filler size, shape, and location can be identified in polymer composites and thus, the dispersion of different samples was quantified with a resolution of ~ 20 µm despite having artifacts in the thermal image. Thermal diffusivity comparison of three mixing techniques was performed for 40% graphite in the elastomer. Batch mixing demonstrated superior dispersion than planetary and hand mixing as the dispersion index (DI) for batch mixing was 0.07 while planetary and hand mixing showed 0.0865 and 0.163 respectively. Curing was investigated for a polymer with different fillers (PDMS took 500 s while PDMS-Graphene and PDMS Graphite Powder took 800 s to cure), and a thermal characteristic curve was generated to compare the composite quality. Therefore, the above-mentioned methods with machine learning algorithms can be a great tool to analyze composite both quantitatively and qualitatively. 
    more » « less
  2. To push upper boundaries of thermal conductivity in polymer composites, understanding of thermal transport mechanisms is crucial. Despite extensive simulations, systematic experimental investigation on thermal transport in polymer composites is limited. To better understand thermal transport processes, we design polymer composites with perfect fillers (graphite) and defective fillers (graphite oxide), using polyvinyl alcohol (PVA) as a matrix model. Measured thermal conductivities of ~1.38 ± 0.22 W m−1K−1in PVA/defective filler composites is higher than those of ~0.86 ± 0.21 W m−1K−1in PVA/perfect filler composites, while measured thermal conductivities in defective fillers are lower than those of perfect fillers. We identify how thermal transport occurs across heterogeneous interfaces. Thermal transport measurements, neutron scattering, quantum mechanical modeling, and molecular dynamics simulations reveal that vibrational coupling between PVA and defective fillers at PVA/filler interfaces enhances thermal conductivity, suggesting that defects in polymer composites improve thermal transport by promoting this vibrational coupling. 
    more » « less
  3. Polymer matrix composites have been used extensively in the aerospace and automotive industries. Nevertheless, the growing demand for composites raises concerns about the thermal stability, cost, and environmental impacts of synthetic fillers like graphene and carbon nanotubes. Hence, this study investigates the possibility of enhancing the thermomechanical properties of polymer composites through the incorporation of agricultural waste as fillers. Particles from walnut, coffee, and coconut shells were used as fillers to create particulate composites. Bio-based composites with 10 to 30 wt.% filler were created by sifting these particles into various mesh sizes and dispersing them in an epoxy matrix. In comparison to the pure polymer, DSC results indicated that the inclusion of 50 mesh 30 wt.% agricultural waste fillers increased the glass transition temperature by 8.5%, from 55.6 °C to 60.33 °C. Also, the TGA data showed improved thermal stability. Subsequently, the agricultural wastes were employed as reinforcement for laminated composites containing woven glass fiber with a 50% fiber volume fraction, eight plies, and varying particle filler weight percentages from 0% to 6% with respect to the laminated composite. The hybrid laminated composite demonstrated improved impact resistance of 142% in low-velocity impact testing. These results demonstrate that fillers made of agricultural wastes can enhance the thermomechanical properties of sustainable composites, creating new environmentally friendly prospects for the automotive and aerospace industries. 
    more » « less
  4. Abstract Understanding thermal transport mechanisms in polymeric composites allows us to expand the boundaries of thermal conductivity in them, either increasing it for more efficient heat dissipation or decreasing it for better thermal insulation. But, these mechanisms are not fully understood. Systematic experimental investigations remain limited. Practical strategies to tune the interfacial thermal resistance (ITR) between fillers and polymers and the thermal conductivity of composites remain elusive. Here, we studied the thermal transport in representative polymer composites, using polyethylene (PE) or polyaniline (PANI) as matrices and graphite as fillers. PANI, with aromatic rings in its backbone, interacts with graphite through strong noncovalent π–π stacking interactions, whereas PE lacks such interactions. We can then quantify how π–π stacking interactions between graphite and polymers enhance thermal transport in composites. PE/graphite and PANI/graphite composites with the same 1.5% filler volume fractions show a ∼22.82% and ∼34.85% enhancement in thermal conductivity compared to pure polymers, respectively. Calculated ITRs in PE/graphite and PANI/graphite are ∼6×10−8 m2 K W−1 and ∼1×10−8 m2 K W−1, respectively, highlighting how π–π stacking interactions reduce ITR. Molecular dynamics (MD) simulations suggest that π–π stacking interactions between PANI chains and graphite surfaces enhance alignment of PANI's aromatic rings with graphite surfaces. This allows more carbon atoms from PANI chains to interact with graphite surfaces at a shorter distance compared to PE chains. Our work indicates that tuning the π–π stacking interactions between polymers and fillers is an effective approach to reduce the ITR and enhance the thermal conductivity of composites. 
    more » « less
  5. Abstract Ceramic/polymer composites can be chemically stable, mechanically strong, and flexible, which make them candidates for electric devices, such as pressure or temperature sensors, energy storage or harvesting devices, actuators, and so forth. Depending on the application, various electrical properties are of importance. Polymers usually have low dielectric permittivity, but increased dielectric permittivity can be achieved by the addition of the ceramic fillers with high dielectric constant. With the aim to enhance dielectric properties of the composite without loss of flexibility, 5 wt% of BaTiO3‐Fe2O3powder was added into a polyvinylidene fluoride matrix. The powder was prepared by different synthesis conditions to produce core/shell structures. The effect of the phase composition and morphology of the BaTiO3‐Fe2O3core/shell filler on the structure and lattice dynamics of the polymer composites was investigated. Based on the results of the thermal analysis, various parameters of ceramic/polymer composites were determined. Differences in the phase composition and morphology of the filler have an influence on the formation of various polyvinylidene fluoride allomorphs and the degree of crystallinity. Furthermore, the dielectric performances of pure polyvinylidene fluoride and the polymer/ceramic composites were measured. 
    more » « less