skip to main content


Title: First Organoid Intelligence (OI) workshop to form an OI community

The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22–24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.

 
more » « less
Award ID(s):
2020624
NSF-PAR ID:
10484679
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Artificial Intelligence
Volume:
6
ISSN:
2624-8212
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Organoid Intelligence ushers in a new era by seamlessly integrating cutting-edge organoid technology with the power of artificial intelligence. Organoids, three-dimensional miniature organ-like structures cultivated from stem cells, offer an unparalleled opportunity to simulate complex human organ systems in vitro. Through the convergence of organoid technology and AI, researchers gain the means to accelerate discoveries and insights across various disciplines. Artificial intelligence algorithms enable the comprehensive analysis of intricate organoid behaviors, intricate cellular interactions, and dynamic responses to stimuli. This synergy empowers the development of predictive models, precise disease simulations, and personalized medicine approaches, revolutionizing our understanding of human development, disease mechanisms, and therapeutic interventions. Organoid Intelligence holds the promise of reshaping how we perceive in vitro modeling, propelling us toward a future where these advanced systems play a pivotal role in biomedical research and drug development. 
    more » « less
  2. Stem cell-derived brain organoids replicate important stages of the prenatal human brain development and combined with the induced pluripotent stem cells (iPSCs) technology offer an unprecedented model for investigating human neurodevelopmental diseases including schizophrenia and autism. I will discuss new insights into organoid-based model of schizophrenia and shed light on challenges and future applications of organoid disease model system. Studies of iPSC and cerebral organoids in combination with electrophysiology, 3D genomics and novel technologies such as nanophotonics/optogenomics, unravel potential applications in the search for new drug treatments and novel technologies such as nanophotonics/optogenomics for controlling and correcting the brain development. 
    more » « less
  3. Human induced pluripotent stem cell (hiPSC)-derived brain organoids can recapitulate the complex cytoarchitecture of the brain as well as the genetic and epigenetic footprint of human brain development. Although the brain organoids are able to mimic the structures and functions of brain in vitro, the 3D models have difficulty in integrating a complex vascular network that can provide the interaction with organoids. Here we report on a microfluidicbased three-dimensional, vascularized cortical organoid tissue construct consisting of 1) a perfused micro-vessel against an extracellular matrix (ECM), dynamic flow and membrane-free culture of the endothelial layer, 2) a sprouted vascular network using a combination of angiogenic factors, and 3) a vascularized hiPSCderived cortical organoid. We report on an optimization of density/stiffness of ECM to induce angiogenic sprouting and effect of angiogenic factors to trigger robust, rapid, and directional angiogenesis for concentration-driven and repetitive sprout formation. Vascularized network in the microfluidic device was further characterized in terms of morphology, directional alignment under perfusion, lumen formation, and permeability. HiPSCderived cortical organoid was generated, placed, and integrated into a vascularized network in the vascularized microfluidic device. We investigate how vascularized micro-vessels interact with cortical organoid. This paper further demonstrates the potential utility of a membrane-free vascularized cortical organoid in perfusion used to model Alzheimer’s disease and for toxicity screening of nerve agents. 
    more » « less
  4. Abstract

    Human induced pluripotent stem cell derived brain organoids have shown great potential for studies of human brain development and neurological disorders. However, quantifying the evolution of the electrical properties of brain organoids during development is currently limited by the measurement techniques, which cannot provide long‐term stable 3D bioelectrical interfaces with developing brain organoids. Here, a cyborg brain organoid platform is reported, in which “tissue‐like” stretchable mesh nanoelectronics are designed to match the mechanical properties of brain organoids and to be folded by the organogenetic process of progenitor or stem cells, distributing stretchable electrode arrays across the 3D organoids. The tissue‐wide integrated stretchable electrode arrays show no interruption to brain organoid development, adapt to the volume and morphological changes during brain organoid organogenesis, and provide long‐term stable electrical contacts with neurons within brain organoids during development. The seamless and noninvasive coupling of electrodes to neurons enables long‐term stable, continuous recording and captures the emergence of single‐cell action potentials from early‐stage brain organoid development.

     
    more » « less
  5. Abstract

    Human cerebral organoids derived from induced pluripotent stem cells (iPSCs) provide novel tools for recapitulating the cytoarchitecture of human brain and for studying biological mechanisms of neurological disorders. However, the heterotypic interactions of neurovascular units, composed of neurons, pericytes, astrocytes, and brain microvascular endothelial cells, in brain-like tissues are less investigated. The objective of this study is to investigate the impacts of neural spheroids and vascular spheroids interactions on the regional brain-like tissue patterning in cortical spheroids derived from human iPSCs. Hybrid neurovascular spheroids were constructed by fusion of human iPSC-derived cortical neural progenitor cell (iNPC) spheroids, endothelial cell (iEC) spheroids, and the supporting human mesenchymal stem cells (MSCs). Single hybrid spheroids were constructed at different iNPC: iEC: MSC ratios of 4:2:0, 3:2:1 2:2:2, and 1:2:3 in low-attachment 96-well plates. The incorporation of MSCs upregulated the secretion levels of cytokines VEGF-A, PGE2, and TGF-β1 in hybrid spheroid system. In addition, tri-cultured spheroids had high levels of TBR1 (deep cortical layer VI) and Nkx2.1 (ventral cells), and matrix remodeling genes, MMP2 and MMP3, as well as Notch-1, indicating the crucial role of matrix remodeling and cell-cell communications on cortical spheroid and organoid patterning. Moreover, tri-culture system elevated blood-brain barrier gene expression (e.g., GLUT-1), CD31, and tight junction protein ZO1 expression. Treatment with AMD3100, a CXCR4 antagonist, showed the immobilization of MSCs during spheroid fusion, indicating a CXCR4-dependent manner of hMSC migration and homing. This forebrain-like model has potential applications in understanding heterotypic cell-cell interactions and novel drug screening in diseased human brain.

     
    more » « less