Smart devices and Internet of Things (IoT) technologies are replacing or being incorporated into traditional devices at a growing pace. The use of digital interfaces to interact with these devices has become a common occurrence in homes, work spaces, and various industries around the world. The most common interfaces for these connected devices focus on mobile apps or voice control via intelligent virtual assistants. However, with augmented reality (AR) becoming more popular and accessible among consumers, there are new opportunities for spatial user interfaces to seamlessly bridge the gap between digital and physical affordances. In this paper, we present a human-subject study evaluating and comparing four user interfaces for smart connected environments: gaze input, hand gestures, voice input, and a mobile app. We assessed participants’ user experience, usability, task load, completion time, and preferences. Our results show multiple trade-offs between these interfaces across these measures. In particular, we found that gaze input shows great potential for future use cases, while both gaze input and hand gestures suffer from limited familiarity among users, compared to voice input and mobile apps.
more »
« less
Exploring the use of Mobile Devices as a Bridge for Cross-Reality Collaboration
Augmented and Virtual Reality technologies enable powerful forms of spatial interaction with a wide range of digital information. While AR and VR headsets are more affordable today than they have ever been, their interfaces are relatively unfamiliar, and a large majority of people around the world do not yet have access to such devices. Inspired by contemporary research towards cross-reality systems that support interactions between mobile and head-mounted devices, we have been exploring the potential of mobile devices to bridge the gap between spatial collaboration and wider availability. In this paper, we outline the development of a cross-reality collaborative experience centered around mobile phones. Nearly fifty users interacted with the experience over a series of research demo days in our lab. We use the initial insights gained from these demonstrations to discuss potential research directions for bringing spatial computing and cross-reality collaboration to wider audiences in the near future.
more »
« less
- Award ID(s):
- 2040489
- PAR ID:
- 10484715
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-2891-2
- Page Range / eLocation ID:
- 41 to 43
- Format(s):
- Medium: X
- Location:
- Sydney, Australia
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Smart devices and Internet of Things (IoT) technologies are replacing or being incorporated into traditional devices at a growing pace. The use of digital interfaces to interact with these devices has become a common occurrence in homes, work spaces, and various industries around the world. The most common interfaces for these connected devices focus on mobile apps or voice control via intelligent virtual assistants. However, with augmented reality (AR) becoming more popular and accessible among consumers, there are new opportunities for spatial user interfaces to seamlessly bridge the gap between digital and physical affordances. In this paper, we present a human-subject study evaluating and comparing four user interfaces for smart connected environments: gaze input, hand gestures, voice input, and a mobile app. We assessed participants’ user experience, usability, task load, completion time, and preferences. Our results show multiple trade-offs between these interfaces across these measures. In particular, we found that gaze input shows great potential for future use cases, while both gaze input and hand gestures suffer from limited familiarity among users, compared to voice input and mobile apps.more » « less
-
HCI has a history of developing rich media spaces to support collaboration between remote parties and testing such systems in investigations where each partner uses the same device setup (i.e., homogeneous device arrangements). In this work, we contribute an infrastructure that supports connection between a projector-camera media space and commodity mobile devices (i.e., tablets, smartphones). Deploying three device arrangements using this infrastructure, we conducted a mixed-methods investigation of device heterogeneity in media space collaboration. We found that the commodity devices provided a worse user experience, though this effect was moderated in some collaboration tasks. Collaborating with a partner who was using a commodity device also negatively affected the experience of the other user. We report specific collaboration concerns introduced by device heterogeneity. Based on these findings, we offer implications for the design of media spaces that use heterogeneous devices.more » « less
-
In-person human interaction relies on our spatial perception of each other and our surroundings. Current remote communication tools partially address each of these aspects. Video calls convey real user representations but without spatial interactions. Augmented and Virtual Reality (AR/VR) experiences are immersive and spatial but often use virtual environments and characters instead of real-life representations. Bridging these gaps, we introduce DualStream, a system for synchronous mobile AR remote communication that captures, streams, and displays spatial representations of users and their surroundings. DualStream supports transitions between user and environment representations with different levels of visuospatial fidelity, as well as the creation of persistent shared spaces using environment snapshots. We demonstrate how DualStream can enable spatial communication in real-world contexts, and support the creation of blended spaces for collaboration. A formative evaluation of DualStream revealed that users valued the ability to interact spatially and move between representations, and could see DualStream fitting into their own remote communication practices in the near future. Drawing from these findings, we discuss new opportunities for designing more widely accessible spatial communication tools, centered around the mobile phone.more » « less
-
Augmented reality is an emerging application on mobile devices. However, there is a lack of understanding of the communication requirements and challenges of multi-user AR scenarios. In this position paper, we propose several important research issues that need to be addressed for low-latency, accurate shared AR experiences: (a) Systems tradeoffs of AR communication architectures used today in mobile AR platforms; (b) Understanding AR communication patterns and adapting the AR application layer to dynamically changing network conditions; and (c) Tools and methodologies to evaluate AR quality of experience in real time on mobile devices. We present preliminary measurements of off-the-shelf mobile AR platforms as well as results from our AR system, ShareAR, illustrating performance tradeoffs and indicating promising new research directions.more » « less