skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DualStream: Spatially Sharing Selves and Surroundings using Mobile Devices and Augmented Reality
In-person human interaction relies on our spatial perception of each other and our surroundings. Current remote communication tools partially address each of these aspects. Video calls convey real user representations but without spatial interactions. Augmented and Virtual Reality (AR/VR) experiences are immersive and spatial but often use virtual environments and characters instead of real-life representations. Bridging these gaps, we introduce DualStream, a system for synchronous mobile AR remote communication that captures, streams, and displays spatial representations of users and their surroundings. DualStream supports transitions between user and environment representations with different levels of visuospatial fidelity, as well as the creation of persistent shared spaces using environment snapshots. We demonstrate how DualStream can enable spatial communication in real-world contexts, and support the creation of blended spaces for collaboration. A formative evaluation of DualStream revealed that users valued the ability to interact spatially and move between representations, and could see DualStream fitting into their own remote communication practices in the near future. Drawing from these findings, we discuss new opportunities for designing more widely accessible spatial communication tools, centered around the mobile phone.  more » « less
Award ID(s):
2040489
PAR ID:
10484712
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2838-7
Page Range / eLocation ID:
138 to 147
Format(s):
Medium: X
Location:
Sydney, Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. In many complex tasks, a remote expert may need to assist a local user or to guide his or her actions in the local user's environment. Existing solutions also allow multiple users to collaborate remotely using high-end Augmented Reality (AR) and Virtual Reality (VR) head-mounted displays (HMD). In this paper, we propose a portable remote collaboration approach, with the integration of AR and VR devices, both running on mobile platforms, to tackle the challenges of existing approaches. The AR mobile platform processes the live video and measures the 3D geometry of the local environment of a local user. The 3D scene is then transited and rendered in the remote side on a mobile VR device, along with a simple and effective user interface, which allows a remote expert to easily manipulate the 3D scene on the VR platform and to guide the local user to complete tasks in the local environment. 
    more » « less
  2. In a future of pervasive augmented reality (AR), AR systems will need to be able to efficiently draw or guide the attention of the user to visual points of interest in their physical-virtual environment. Since AR imagery is overlaid on top of the user's view of their physical environment, these attention guidance techniques must not only compete with other virtual imagery, but also with distracting or attention-grabbing features in the user's physical environment. Because of the wide range of physical-virtual environments that pervasive AR users will find themselves in, it is difficult to design visual cues that “pop out” to the user without performing a visual analysis of the user's environment, and changing the appearance of the cue to stand out from its surroundings. In this paper, we present an initial investigation into the potential uses of dichoptic visual cues for optical see-through AR displays, specifically cues that involve having a difference in hue, saturation, or value between the user's eyes. These types of cues have been shown to be preattentively processed by the user when presented on other stereoscopic displays, and may also be an effective method of drawing user attention on optical see-through AR displays. We present two user studies: one that evaluates the saliency of dichoptic visual cues on optical see-through displays, and one that evaluates their subjective qualities. Our results suggest that hue-based dichoptic cues or “Forbidden Colors” may be particularly effective for these purposes, achieving significantly lower error rates in a pop out task compared to value-based and saturation-based cues. 
    more » « less
  3. We present an Augmented Reality (AR) experience, enabling user interaction with a Virtual Human (VH) of an older adult. We demonstrate the feasibility of the technology to foster communication and social connection between caregivers (users) and older adults (the VH). We developed a 3D model of an embodied virtual geriatric patient that demonstrates awareness of its environment and conversations, and implemented a networking protocol for remote response control with a human in the loop. 
    more » « less
  4. null (Ed.)
    Mobile Augmented Reality (AR) provides immersive experiences by aligning virtual content (holograms) with a view of the real world. When a user places a hologram it is usually expected that like a real object, it remains in the same place. However, positional errors frequently occur due to inaccurate environment mapping and device localization, to a large extent determined by the properties of natural visual features in the scene. In this demonstration we present SceneIt, the first visual environment rating system for mobile AR based on predictions of hologram positional error magnitude. SceneIt allows users to determine if virtual content placed in their environment will drift noticeably out of position, without requiring them to place that content. It shows that the severity of positional error for a given visual environment is predictable, and that this prediction can be calculated with sufficiently high accuracy and low latency to be useful in mobile AR applications. 
    more » « less
  5. Abstract Augmented reality (AR) enhances the user’s perception of the real environment by superimposing virtual images generated by computers. These virtual images provide additional visual information that complements the real-world view. AR systems are rapidly gaining popularity in various manufacturing fields such as training, maintenance, assembly, and robot programming. In some AR applications, it is crucial for the invisible virtual environment to be precisely aligned with the physical environment to ensure that human users can accurately perceive the virtual augmentation in conjunction with their real surroundings. The process of achieving this accurate alignment is known as calibration. During some robotics applications using AR, we observed instances of misalignment in the visual representation within the designated workspace. This misalignment can potentially impact the accuracy of the robot’s operations during the task. Based on the previous research on AR-assisted robot programming systems, this work investigates the sources of misalignment errors and presents a simple and efficient calibration procedure to reduce the misalignment accuracy in general video see-through AR systems. To accurately superimpose virtual information onto the real environment, it is necessary to identify the sources and propagation of errors. In this work, we outline the linear transformation and projection of each point from the virtual world space to the virtual screen coordinates. An offline calibration method is introduced to determine the offset matrix from the head-mounted display (HMD) to the camera, and experiments are conducted to validate the improvement achieved through the calibration process. 
    more » « less