Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available March 11, 2025
-
Free, publicly-accessible full text available February 11, 2025
-
In-person human interaction relies on our spatial perception of each other and our surroundings. Current remote communication tools partially address each of these aspects. Video calls convey real user representations but without spatial interactions. Augmented and Virtual Reality (AR/VR) experiences are immersive and spatial but often use virtual environments and characters instead of real-life representations. Bridging these gaps, we introduce DualStream, a system for synchronous mobile AR remote communication that captures, streams, and displays spatial representations of users and their surroundings. DualStream supports transitions between user and environment representations with different levels of visuospatial fidelity, as well as the creation of persistent shared spaces using environment snapshots. We demonstrate how DualStream can enable spatial communication in real-world contexts, and support the creation of blended spaces for collaboration. A formative evaluation of DualStream revealed that users valued the ability to interact spatially and move between representations, and could see DualStream fitting into their own remote communication practices in the near future. Drawing from these findings, we discuss new opportunities for designing more widely accessible spatial communication tools, centered around the mobile phone.more » « less
-
Augmented and Virtual Reality technologies enable powerful forms of spatial interaction with a wide range of digital information. While AR and VR headsets are more affordable today than they have ever been, their interfaces are relatively unfamiliar, and a large majority of people around the world do not yet have access to such devices. Inspired by contemporary research towards cross-reality systems that support interactions between mobile and head-mounted devices, we have been exploring the potential of mobile devices to bridge the gap between spatial collaboration and wider availability. In this paper, we outline the development of a cross-reality collaborative experience centered around mobile phones. Nearly fifty users interacted with the experience over a series of research demo days in our lab. We use the initial insights gained from these demonstrations to discuss potential research directions for bringing spatial computing and cross-reality collaboration to wider audiences in the near future.more » « less
-
Movement forms the basis of our thoughts, emotions, and ways of being in the world. Informed by somaesthetics, we design for “taking up space” (e.g. encouraging expansive body movements), which may in turn alter our emotional experience. We demonstrate SoniSpace, an expressive movement interaction experience that uses movement sonification and visualization to encourage users to take up space with their body. We apply a first-person design approach to embed qualities of awareness, exploration, and comfort into the sound and visual design to promote authentic and enjoyable movement expression regardless of prior movement experience. Preliminary results from 20 user experiences with the system show that users felt more comfortable with taking up space and with movement in general following the interaction. We discuss our findings about designing for somatically-focused movement interactions and directions for future work.more » « less
-
The electronics-centered approach to physical computing presents challenges when designers build tangible interactive systems due to its inherent emphasis on circuitry and electronic components. To explore an alternative physical computing approach we have developed a computer vision (CV) based system that uses a webcam, computer, and printed fiducial markers to create functional tangible interfaces. Through a series of design studios, we probed how designers build tangible interfaces with this CV-driven approach. In this paper, we apply the annotated portfolio method to reflect on the fifteen outcomes from these studios. We observed that CV markers offer versatile materiality for tangible interactions, afford the use of democratic materials for interface construction, and engage designers in embodied debugging with their own vision as a proxy for CV. By sharing our insights, we inform other designers and educators who seek alternative ways to facilitate physical computing and tangible interaction design.more » « less
-
Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers can readily produce network physicalizations supporting selection—the most critical atomic operation for interaction—by touch through capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i) computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption.more » « less