skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Well-hidden methanogenesis in deep, organic-rich sediments of Guaymas Basin
Abstract Deep marine sediments (>1mbsf) harbor ~26% of microbial biomass and are the largest reservoir of methane on Earth. Yet, the deep subsurface biosphere and controls on its contribution to methane production remain underexplored. Here, we use a multidisciplinary approach to examine methanogenesis in sediments (down to 295 mbsf) from sites with varying degrees of thermal alteration (none, past, current) at Guaymas Basin (Gulf of California) for the first time. Traditional (13C/12C and D/H) and multiply substituted (13CH3D and12CH2D2) methane isotope measurements reveal significant proportions of microbial methane at all sites, with the largest signal at the site with past alteration. With depth, relative microbial methane decreases at differing rates between sites. Gibbs energy calculations confirm methanogenesis is exergonic in Guaymas sediments, with methylotrophic pathways consistently yielding more energy than the canonical hydrogenotrophic and acetoclastic pathways. Yet, metagenomic sequencing and cultivation attempts indicate that methanogens are present in low abundance. We find only one methyl-coenzyme M (mcrA) sequence within the entire sequencing dataset. Also, we identify a wide diversity of methyltransferases (mtaB, mttB), but only a few sequences phylogenetically cluster with methylotrophic methanogens. Our results suggest that the microbial methane in the Guaymas subsurface was produced over geologic time by relatively small methanogen populations, which have been variably influenced by thermal sediment alteration. Higher resolution metagenomic sampling may clarify the modern methanogen community. This study highlights the importance of using a multidisciplinary approach to capture microbial influences in dynamic, deep subsurface settings like Guaymas Basin.  more » « less
Award ID(s):
2048489
PAR ID:
10484744
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
ISME Journal
Date Published:
Journal Name:
The ISME Journal
Volume:
17
Issue:
11
ISSN:
1751-7362
Page Range / eLocation ID:
1828 to 1838
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Prairie Pothole Region (PPR) of North America contains millions of small depressional wetlands with some of the highest methane (CH4) fluxes ever reported in terrestrial ecosystems. In saturated soils, two conventional paradigms are (a) methanogenesis is the final step in the redox ladder, occurring only after more thermodynamically favorable electron acceptors (e.g., sulfate) are reduced, and (b) CH4is primarily produced by acetoclastic and hydrogenotrophic pathways. However, previous work in PPR wetlands observed co‐occurrence of sulfate‐reduction and methanogenesis and the presence of diverse methanogenic substrates (i.e., methanol, DMS). This study investigated how methylotrophic methanogenesis—in addition to acetoclastic and hydrogenotrophic methanogenesis—significantly contributes to CH4flux in surface sediments and thus allows for the co‐occurrence of competing redox processes in PPR sediments. We addressed this aim through field studies in two distinct high CH4emitting wetlands in the PPR complex, which coupled microbial community compositional and functional inferences with depth‐resolved electrochemistry measurements in surficial wetland sediments. This study revealed methylotrophic methanogens as the dominant group of methanogens in the presence of abundant organic sulfate esters, which are likely used for sulfate reduction. Resulting high sulfide concentrations likely caused sulfide toxicity in hydrogenotrophic and acetoclastic methanogens. Additionally, the use of non‐competitive substrates by many methylotrophic methanogens allows these metabolisms to bypass thermodynamic constraints and can explain co‐existence patterns of sulfate‐reduction and methanogenesis. This study demonstrates that the current models of methanogenesis in wetland ecosystems insufficiently represent carbon cycling in some of the highest CH4emitting environments. 
    more » « less
  2. The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, the rapid deposition of organic-rich sediments, steep geothermal gradients, and abundant methane of mixed thermogenic and microbial origin. Subsurface sediment samples from eight drilling sites with distinct geochemical and thermal profiles were selected for DNA extraction and PCR amplification to explore the diversity of methane-cycling archaea in the Guaymas Basin subsurface. We performed PCR amplifications with general (mcrIRD), and ANME-1 specific primers that target the alpha (α) subunit of methyl coenzyme M reductase (mcrA). Diverse ANME-1 lineages associated with anaerobic methane oxidation were detected in seven out of the eight drilling sites, preferentially around the methane-sulfate interface, and in several cases, showed preferences for specific sampling sites. Phylogenetically, most ANME-1 sequences from the Guaymas Basin subsurface were related to marine mud volcanoes, seep sites, and the shallow marine subsurface. The most frequently recovered methanogenic phylotypes were closely affiliated with the hyperthermophilic Methanocaldococcaceae, and found at the hydrothermally influenced Ringvent site. The coolest drilling site, in the northern axial trough of Guaymas Basin, yielded the greatest diversity in methanogen lineages. Our survey indicates the potential for extensive microbial methane cycling within subsurface sediments of Guaymas Basin. 
    more » « less
  3. The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, the rapid deposition of organic-rich sediments, steep geothermal gradients, and abundant methane of mixed thermogenic and microbial origin. Subsurface sediment samples from eight drilling sites with distinct geochemical and thermal profiles were selected for DNA extraction and PCR amplification to explore the diversity of methane-cycling archaea in the Guaymas Basin subsurface. We performed PCR amplifications with general (mcrIRD), and ANME-1 specific primers that target the alpha subunit of methyl coenzyme M reductase (mcrA). Diverse ANME-1 lineages associated with anaerobic methane oxidation were detected in seven out of the eight drilling sites, preferentially around the methane-sulfate interface, and in several cases, showed preferences for specific sampling sites. Phylogenetically, most ANME-1 sequences from the Guaymas Basin subsurface were related to marine mud volcanoes, seep sites, and the shallow marine subsurface. The most frequently recovered methanogenic phylotypes were closely affiliated with the hyperthermophilic Methanocaldococcaceae, and found at the hydrothermally influenced Ringvent site. The coolest drilling site, in the northern axial trough of Guaymas Basin, yielded the greatest diversity in methanogen lineages. Our survey indicates the potential for extensive microbial methane cycling within subsurface sediments of Guaymas Basin. 
    more » « less
  4. Abstract Deeply fractured rocks of meteorite impact craters are suggested as prime niches for subsurface microbial colonization. Methane can be a product of such microbial communities and seeps of methane from impact craters on Earth are of strong interest as they act as analogs for Mars. Previous studies report signs of ancient microbial methanogenesis in the Devonian Siljan meteorite impact structure in Sweden, but the proportion of microbial methane, metabolic pathways, and potential modern activity remain elusive. In this study, gas composition, hydrochemistry, oil organic geochemistry, and microbial community analyses are reported in 400 m deep fractures of the Siljan impact structure. The results showed a dominantly microbial origin for methane, which was supported by highly negative δ13CCH4and positive δ13CCO2values along with multiply substituted isotopologues (Δ13CH3D) that indicated disequilibrium fractionation due to microbial kinetic isotope effects. The presence of C2to C5hydrocarbons suggested a minor thermogenic input in the gas mix. Characterization of the microbial community via 16S rRNA gene amplicon sequencing and real-time PCR indicated a low abundance of several methanogenic archaeal populations, which is common for settings with active methanogenesis. Evidence of oil biodegradation suggested that secondary microbial hydrocarbon utilization was involved in the methanogenesis. Low sulfate and high alkalinity in the groundwaters also suggested a dominantly microbial methane formation driven by infiltration of freshwater that was coupled to sulfate reduction and secondary utilization of early mature thermogenic hydrocarbons. 
    more » « less
  5. Hernandez, Marcela (Ed.)
    ABSTRACT While wetlands are major sources of biogenic methane (CH4), our understanding of resident microbial metabolism is incomplete, which compromises the prediction of CH4emissions under ongoing climate change. Here, we employed genome-resolved multi-omics to expand our understanding of methanogenesis in the thawing permafrost peatland of Stordalen Mire in Arctic Sweden. In quadrupling the genomic representation of the site’s methanogens and examining their encoded metabolism, we revealed that nearly 20% of the metagenome-assembled genomes (MAGs) encoded the potential for methylotrophic methanogenesis. Further, 27% of the transcriptionally active methanogens expressed methylotrophic genes; forMethanosarcinalesandMethanobacterialesMAGs, these data indicated the use of methylated oxygen compounds (e.g., methanol), while forMethanomassiliicoccales, they primarily implicated methyl sulfides and methylamines. In addition to methanogenic methylotrophy, >1,700 bacterial MAGs across 19 phyla encoded anaerobic methylotrophic potential, with expression across 12 phyla. Metabolomic analyses revealed the presence of diverse methylated compounds in the Mire, including some known methylotrophic substrates. Active methylotrophy was observed across all stages of a permafrost thaw gradient in Stordalen, with the most frozen non-methanogenic palsa found to host bacterial methylotrophy and the partially thawed bog and fully thawed fen seen to house both methanogenic and bacterial methylotrophic activities. Methanogenesis across increasing permafrost thaw is thus revised from the sole dominance of hydrogenotrophic production and the appearance of acetoclastic at full thaw to consider the co-occurrence of methylotrophy throughout. Collectively, these findings indicate that methanogenic and bacterial methylotrophy may be an important and previously underappreciated component of carbon cycling and emissions in these rapidly changing wetland habitats. IMPORTANCEWetlands are the biggest natural source of atmospheric methane (CH4) emissions, yet we have an incomplete understanding of the suite of microbial metabolism that results in CH4formation. Specifically, methanogenesis from methylated compounds is excluded from all ecosystem models used to predict wetland contributions to the global CH4budget. Though recent studies have shown methylotrophic methanogenesis to be active across wetlands, the broad climatic importance of the metabolism remains critically understudied. Further, some methylotrophic bacteria are known to produce methanogenic by-products like acetate, increasing the complexity of the microbial methylotrophic metabolic network. Prior studies of Stordalen Mire have suggested that methylotrophic methanogenesis is irrelevantin situand have not emphasized the bacterial capacity for metabolism, both of which we countered in this study. The importance of our findings lies in the significant advancement toward unraveling the broader impact of methylotrophs in wetland methanogenesis and, consequently, their contribution to the terrestrial global carbon cycle. 
    more » « less