Adaptive bitrate (ABR) algorithms play a critical role in video streaming by making optimal bitrate decisions in dynamically changing network conditions to provide a high quality of experience (QoE) for users. However, most existing ABRs suffer from limitations such as predefined rules and incorrect assumptions about streaming parameters. They often prioritize higher bitrates and ignore the corresponding energy footprint, resulting in increased energy consumption, especially for mobile device users. Additionally, most ABR algorithms do not consider perceived quality, leading to suboptimal user experience. This article proposes a novel ABR scheme called GreenABR+, which utilizes deep reinforcement learning to optimize energy consumption during video streaming while maintaining high user QoE. Unlike existing rule-based ABR algorithms, GreenABR+ makes no assumptions about video settings or the streaming environment. GreenABR+ model works on different video representation sets and can adapt to dynamically changing conditions in a wide range of network scenarios. Our experiments demonstrate that GreenABR+ outperforms state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 57% in data consumption while providing up to 25% more perceptual QoE due to up to 87% less rebuffering time and near-zero capacity violations. The generalization and dynamic adaptability make GreenABR+ a flexible solution for energy-efficient ABR optimization. 
                        more » 
                        « less   
                    
                            
                            COREL: Constrained Reinforcement Learning for Video Streaming ABR Algorithm Design Over mmWave 5G
                        
                    
    
            The adaptive bitrate selection (ABR) mechanism, which decides the bitrate for each video chunk is an important part of video streaming. There has been significant interest in developing Reinforcement-Learning (RL) based ABR algorithms because of their ability to learn efficient bitrate actions based on past data and their demonstrated improvements over wired, 3G and 4G networks. However, the Quality of Experience (QoE), especially video stall time, of state-of-the-art ABR algorithms including the RL-based approaches falls short of expectations over commercial mmWave 5G networks, due to widely and wildly fluctuating throughput. These algorithms find optimal policies for a multi-objective unconstrained problem where the policies inherently depend on the predefined weight parameters of the multiple objectives (e.g., bitrate maximization, stall-time minimization). Our empirical evaluation suggests that such a policy cannot adequately adapt to the high variations of 5G throughput, resulting in long stall times. To address these issues, we formulate the ABR selection problem as a constrained Markov Decision Process where the objective is to maximize the QoE subject to a stall-time constraint. The strength of this formulation is that it helps mitigate the stall time while maintaining high bitrates. We propose COREL, a primal-dual actor-critic RL algorithm, which incorporates an additional critic network to estimate stall time compared to existing RL-based approaches and can tune the optimal dual variable or weight to guide the policy towards minimizing stall time. Our experiment results across various commercial mmWave 5G traces reveal that COREL reduces the average stall time by a factor of 4 and the 95th percentile by a factor of 2. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10484806
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- 2023 IEEE International Workshop Technical Committee on Communications Quality and Reliability (CQR)
- ISBN:
- 979-8-3503-4062-4
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Location:
- Washington, DC, USA
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Adaptive bitrate (ABR) algorithms aim to make optimal bitrate de- cisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video stream- ing. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming pa- rameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR’s deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations.more » « less
- 
            Adaptive bitrate (ABR) algorithms aim to make optimal bitrate decisions in dynamically changing network conditions to ensure a high quality of experience (QoE) for the users during video streaming. However, most of the existing ABRs share the limitations of predefined rules and incorrect assumptions about streaming parameters. They also come short to consider the perceived quality in their QoE model, target higher bitrates regardless, and ignore the corresponding energy consumption. This joint approach results in additional energy consumption and becomes a burden, especially for mobile device users. This paper proposes GreenABR, a new deep reinforcement learning-based ABR scheme that optimizes the energy consumption during video streaming without sacrificing the user QoE. GreenABR employs a standard perceived quality metric, VMAF, and real power measurements collected through a streaming application. GreenABR's deep reinforcement learning model makes no assumptions about the streaming environment and learns how to adapt to the dynamically changing conditions in a wide range of real network scenarios. GreenABR outperforms the existing state-of-the-art ABR algorithms by saving up to 57% in streaming energy consumption and 60% in data consumption while achieving up to 22% more perceptual QoE due to up to 84% less rebuffering time and near-zero capacity violations.more » « less
- 
            The HTTP adaptive streaming technique opened the door to cope with the fluctuating network conditions during the streaming process by dynamically adjusting the volume of the future chunks to be downloaded. The bitrate selection in this adjustment inevitably involves the task of predicting the future throughput of a video session, owing to which various heuristic solutions have been explored. The ultimate goal of the present work is to explore the theoretical upper bounds of the QoE that any ABR algorithm can possibly reach, therefore providing an essential step to benchmarking the performance evaluation of ABR algorithms. In our setting, the QoE is defined in terms of a linear combination of the average perceptual quality and the buffering ratio. The optimization problem is proven to be NP-hard when the perceptual quality is defined by chunk size and conditions are given under which the problem becomes polynomially solvable. Enriched by a global lower bound, a pseudo-polynomial time algorithm along the dynamic programming approach is presented. When the minimum buffering is given higher priority over higher perceptual quality, the problem is shown to be also NP-hard, and the above algorithm is simplified and enhanced by a sequence of lower bounds on the completion time of chunk downloading, which, according to our experiment, brings a 36.0% performance improvement in terms of computation time. To handle large amounts of data more efficiently, a polynomial-time algorithm is also introduced to approximate the optimal values when minimum buffering is prioritized. Besides its performance guarantee, this algorithm is shown to reach 99.938% close to the optimal results, while taking only 0.024% of the computation time compared to the exact algorithm in dynamic programming.more » « less
- 
            Neural Radiance Field (NeRF) has emerged as a powerful technique for 3D scene representation due to its high rendering quality. Among its applications, mobile NeRF video-on-demand (VoD) is especially promising, beneting from both the scalability of the mobile devices and the immersive experience oered by NeRF. However, streaming NeRF videos over real-world networks presents signi cant challenges, particularly due to limited bandwidth and temporal dynamics. To address these challenges, we propose NeRFlow, a novel framework that enables adaptive streaming for NeRF videos through both bitrate and viewpoint adaptation. NeRFlow solves three fundamental problems: rst, it employs a rendering-adaptive pruning technique to determine voxel importance, selectively reducing data size without sacricing rendering quality. Second, it introduces a viewpoint-aware adaptation module that eciently compensates for uncovered regions in real time by combining preencoded master and sub-frames. Third, it incorporates a QoE-aware bitrate ladder generation framework, leveraging a genetic algorithm to optimize the number and conguration of bitrates while accounting for bandwidth dynamics and ABR algorithms. Through extensive experiments, NeRFlow is demonstrated to eectively improve user Quality of Experience (QoE) by 31.3% to 41.2%, making it an ecient solution for NeRF video streaming.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
