skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling post-disaster recovery: Accounting for rental and multi-family housing
Post-disaster housing recovery models increase our understanding of recovery dynamics, vulnerable populations, and how people are affected by the direct losses that disasters create. Past recovery models have focused on single-family owner-occupied housing, while empirical evidence shows that rental units and multi-family housing are disadvantaged in post-disaster recovery. To fill this gap, this article presents an agent-based housing recovery model that includes the four common type–tenure combinations of single- and multi-family owner- and renter-occupied housing. The proposed model accounts for the different recovery processes, emphasizing funding sources available to each type–tenure. The outputs of our model include the timing of financing and recovery at building resolution across a community. We demonstrate the model with a case study of Alameda, California, recovering from a simulated M7.0 earthquake on the Hayward fault. The processes in the model replicate higher non-recovery of multi-family housing than single-family housing, as observed in past disasters, and a heavy reliance of single-family renter-occupied units on Small Business Administration funding, which is expected due to low earthquake insurance penetration. The simulation results indicate that multi-family housing would have the highest portion of unmet need remaining; however, some buildings with unmet needs are anticipated to be able to obtain a large portion of their funding. The remaining portion may be filled using personal financing or may be overcome with downsizing or downgrades. Multi-family housing would also benefit the most from Community Development Block Grants for Disaster Recovery (CDBG-DR). This benefit is a result of modeling the financing sources, that CDBG-DR is available, and that many multi-family buildings do not qualify for other sources. Communities’ allocation of public funding is important for housing recovery. Our model can help inform and compare potential financing policies to allocate public funds.  more » « less
Award ID(s):
2053014
PAR ID:
10484967
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Earthquake Spectra
Volume:
40
Issue:
2
ISSN:
8755-2930
Format(s):
Medium: X Size: p. 1353-1375
Size(s):
p. 1353-1375
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the United States, assistance from the Department of Housing and Urban Development (HUD) plays an essential role in supporting the postdisaster recovery of states with unmet housing needs. HUD requires data on unmet needs to appropriate recovery funds. Ground truth data are not available for months after a disaster, however, so HUD uses a simplified approach to estimate unmet housing needs. State authorities argue that HUD's simplified approach underestimates the state's needs. This article presents a methodology to estimate postdisaster unmet housing needs that is accurate and relies only on data obtained shortly after a disaster. Data on the number of damaged buildings are combined with models for expected repair costs. Statistical models for aid distributed by the Federal Emergency Management Agency (FEMA) and the Small Business Administration (SBA) are then developed and used to forecast funding provided by those agencies. With these forecasts, the unmet need to be funded by HUD is estimated. The approach can be used for multiple states and hazard types. As validation, the proposed methodology is used to estimate the unmet housing needs following disasters that struck California in 2017. California authorities suggest that HUD's methodology underestimated the state's needs by a factor of 20. Conversely, the proposed methodology can replicate the estimates by the state authorities and provide accounts of losses, the amount of funding from FEMA and SBA, and the total unmet housing needs without requiring data unavailable shortly after a disaster. Thus, the proposed methodology can help improve HUD's funding appropriation without delays. 
    more » « less
  2. Abstract Urban neighborhoods with locations of environmental contamination, known as brownfields, impact entire neighborhoods, but corrective environmental remedial action on brownfields is often tracked on an individual property basis, neglecting the larger neighborhood-level impact. This study addresses this impact by examining spatial differences between brownfields with unmitigated environmental concerns (open site) and sites that are considered fully mitigated or closed in urban neighborhoods (closed site) on the US census tract scale in Wayne County, MI. Michigan’s Department of Environment, Great Lakes, and Energy’s leaking underground storage tank (LUST) database provided brownfield information for Wayne County. Local indicators of spatial association (LISA) produced maps of spatial clustering and outliers. A McNemar’s test demonstrated significant discordances in LISA categories between LUST open and closed sites ( p  < 0.001). Geographically weighted regressions (GWR) evaluated the association between open and closed site spatial density (open-closed) with socioeconomic variables (population density, proportion of White or Black residents, proportion of college educated populations, the percentage of owner-occupied units, vacant units, rented units, and median household value). Final multivariate GWR showed that population density, being Black, college education, vacant units, and renter occupied units were significantly associated ( p  < 0.05) with open-closed, and that those associations varied across Wayne County. Increases in Black population was associated with increased open-closed. Increases in vacant units, renter-occupied units, and college education were associated with decreased open-closed. These results provide input for environmental justice research to identify inequalities and discover the distribution of environmental hazards among urban neighborhoods. 
    more » « less
  3. Abstract AI fairness is tasked with evaluating and mitigating bias in algorithms that may discriminate towards protected groups. This paper examines if bias exists in AI algorithms used in disaster management and in what manner. We consider the 2017 Hurricane Harvey when flood victims in Houston resorted to social media to request for rescue. We evaluate a Random Forest regression model trained to predict Twitter rescue request rates from social-environmental data using three fairness criteria (independence, separation, and sufficiency). The Social Vulnerability Index (SVI), its four sub-indices, and four variables representing digital divide were considered sensitive attributes. The Random Forest regression model extracted seven significant predictors of rescue request rates, and from high to low importance they were percent of renter occupied housing units, percent of roads in flood zone, percent of flood zone area, percent of wetland cover, percent of herbaceous, forested and shrub cover, mean elevation, and percent of households with no computer or device. Partial Dependence plots of rescue request rates against each of the seven predictors show the non-linear nature of their relationships. Results of the fairness evaluation of the Random Forest model using the three criteria show no obvious biases for the nine sensitive attributes, except that a minor imperfect sufficiency was found with the SVI Housing and Transportation sub-index. Future AI modeling in disaster research could apply the same methodology used in this paper to evaluate fairness and help reduce unfair resource allocation and other social and geographical disparities. 
    more » « less
  4. Quantitative assessment of community resilience is a challenge due to the lack of empirical data about human dynamics in disasters. To fill the data gap, this study explores the utility of nighttime lights (NTL) remote sensing images in assessing community recovery and resilience in natural disasters. Specifically, this study utilized the newly-released NASA moonlight-adjusted SNPP-VIIRS daily images to analyze spatiotemporal changes of NTL radiance in Hurricane Sandy (2012). Based on the conceptual framework of recovery trajectory, NTL disturbance and recovery during the hurricane were calculated at different spatial units and analyzed using spatial analysis tools. Regression analysis was applied to explore relations between the observed NTL changes and explanatory variables, such as wind speed, housing damage, land cover, and Twitter keywords. The result indicates potential factors of NTL changes and urban-rural disparities of disaster impacts and recovery. This study shows that NTL remote sensing images are a low-cost instrument to collect near-real-time, large-scale, and high-resolution human dynamics data in disasters, which provide a novel insight into community recovery and resilience. The uncovered spatial disparities of community recovery help improve disaster awareness and preparation of local communities and promote resilience against future disasters. The systematical documentation of the analysis workflow provides a reference for future research in the application of SNPP-VIIRS daily images. 
    more » « less
  5. As the number of highly destructive wildfires grows, it is increasingly important to understand the long-term changes that occur to fire-affected places. Integrating approaches from social and biophysical science, we document two forms of neighborhood change following the 2018 Camp Fire in the United States, examining the more than 17,000 residential structures within the burn footprint. We found that mobile or motor homes, lowervalue residences, and absentee owner residences had a significantly higher probability of being destroyed, providing evidence that housing stock filtering facilitated socially stratified patterns of physical damage. While the relationship between building value and destruction probability could be explained by measures of building density and distance to nearby roads, building type remained an independent predictor of structure loss that we could not fully explain by adding environmental covariates to our models. Using a geospatial machine learning technique, we then identified buildings that had been reconstructed within the burn footprint 20 months after the fire. We found that reconstructed buildings were more likely to have been owner-occupied prior to the fire and had higher average pre-fire property value, suggesting an emerging pattern of cost-burden gentrification. Our findings illustrate the importance of examining the built environment as a driver of socially uneven disaster impacts. Wildfire mitigation strategies are needed for mobile and motor home residents, renters, low-income residents, and dense neighborhoods. 
    more » « less