skip to main content


Title: Partition-Based Nonstationary Covariance Estimation Using the Stochastic Score Approximation
We introduce computational methods that allow for effective estimation of a flexible nonstationary spatial model when the field size is too large to compute the multivariate normal likelihood directly. In this method, the field is defined as a weighted spatially varying linear combination of a globally stationary process and locally stationary processes. Often in such a model, the difficulty in its practical use is in the definition of the boundaries for the local processes, and therefore, we describe one such selection procedure that generally captures complex nonstationary relationships. We generalize the use of a stochastic approximation to the score equations in this nonstationary case and provide tools for evaluating the approximate score in O(n log n ) operations and O(n) storage for data on a subset of a grid. We perform various simulations to explore the effectiveness and speed of the proposed methods and conclude by predicting average daily temperature. Supplementary materials for this article are available online.  more » « less
Award ID(s):
1916208
NSF-PAR ID:
10485005
Author(s) / Creator(s):
; ;
Publisher / Repository:
Taylor and Francis
Date Published:
Journal Name:
Journal of Computational and Graphical Statistics
Volume:
31
Issue:
4
ISSN:
1061-8600
Page Range / eLocation ID:
1025 to 1036
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    We propose to model a spatio-temporal random field that has nonstationary covariance structure in both space and time domains by applying the concept of the dimension expansion method in Bornn et al. (2012). Simulations are conducted for both separable and nonseparable space-time covariance models, and the model is also illustrated with a streamflow dataset. Both simulation and data analyses show that modeling nonstationarity in both space and time can improve the predictive performance over stationary covariance models or models that are nonstationary in space but stationary in time.

     
    more » « less
  2. Abstract

    Stationary points embedded in the derivatives are often critical for a model to be interpretable and may be considered as key features of interest in many applications. We propose a semiparametric Bayesian model to efficiently infer the locations of stationary points of a nonparametric function, which also produces an estimate of the function. We use Gaussian processes as a flexible prior for the underlying function and impose derivative constraints to control the function's shape via conditioning. We develop an inferential strategy that intentionally restricts estimation to the case of at least one stationary point, bypassing possible mis-specifications in the number of stationary points and avoiding the varying dimension problem that often brings in computational complexity. We illustrate the proposed methods using simulations and then apply the method to the estimation of event-related potentials derived from electroencephalography (EEG) signals. We show how the proposed method automatically identifies characteristic components and their latencies at the individual level, which avoids the excessive averaging across subjects that is routinely done in the field to obtain smooth curves. By applying this approach to EEG data collected from younger and older adults during a speech perception task, we are able to demonstrate how the time course of speech perception processes changes with age.

     
    more » « less
  3. Abstract Analyzing gradual trends in meteorological drought has become increasingly important as anthropogenic climate change and natural climate variability interact to complicate measurement of drought severity. Complex seasonality and long-term trends pose a limitation in understanding spatial trends in nonstationary changes of meteorological drought in the United States. This study seeks to address this issue by simultaneously analyzing recurring seasonal patterns (stationary component) and long-term drought trends (nonstationary component), with a unique focus on nonlinear trends and common regional patterns. We analyzed 696 instrumental precipitation gauges with long historical records in the continental United States, using a novel spline-based model to disaggregate a 3-month meteorological drought index (SPI) into its seasonal and long-term components. The disaggregated components for each gauge were then clustered into subregions with similar seasonality and groupings with similar long-term trends using a two-step process. Our results identify clearly defined regions based on precipitation seasonality, while long-term trends are not spatially coherent with the seasonality. Instead, these findings support prior findings of an increasingly drier western United States and an increasingly wetter eastern United States over the last century, but with more nuanced spatial and temporal patterns. The new clustering analysis based on nonstationary meteorological drought trends can contribute to informing and adapting current water management strategies to long-term drought trends. Significance Statement This study considered 656 precipitation gauges across the continental United States to find regions with similar precipitation seasonality and then to group records with similar long-term climate trends. The study focused on 3-month average precipitation, a key indicator for drought monitoring. We identified eight regions across the United States with similar precipitation seasonality. From 1920 to the present, we found continuous drying trends throughout the western United States, continuously wetter trends in the northern plains, and an overall wetter trend interrupted by a midcentury dry period (1930–50) for much of the central Plains and Midwest. This study’s use of splines, or fitted curves, allowed these nonlinear patterns, which we believe better capture the nuances and intensification of climate change effects on precipitation. 
    more » « less
  4. Abstract

    The standardized precipitation index (SPI) measures meteorological drought relative to historical climatology by normalizing accumulated precipitation. Longer record lengths improve parameter estimates, but these longer records may include signals of anthropogenic climate change and multidecadal natural climate fluctuations. Historically, climate nonstationarity has either been ignored or incorporated into the SPI using a quasi-stationary reference period, such as the WMO 30-yr period. This study introduces and evaluates a novel nonstationary SPI model based on Bayesian splines, designed to both improve parameter estimates for stationary climates and to explicitly incorporate nonstationarity. Using synthetically generated precipitation, this study directly compares the proposed Bayesian SPI model with existing SPI approaches based on maximum likelihood estimation for stationary and nonstationary climates. The proposed model not only reproduced the performance of existing SPI models but improved upon them in several key areas: reducing parameter uncertainty and noise, simultaneously modeling the likelihood of zero and positive precipitation, and capturing nonlinear trends and seasonal shifts across all parameters. Further, the fully Bayesian approach ensures all parameters have uncertainty estimates, including zero precipitation likelihood. The study notes that the zero precipitation parameter is too sensitive and could be improved in future iterations. The study concludes with an application of the proposed Bayesian nonstationary SPI model for nine gauges across a range of hydroclimate zones in the United States. Results of this experiment show that the model is stable and reproduces nonstationary patterns identified in prior studies, while also indicating new findings, particularly for the shape and zero precipitation parameters.

    Significance Statement

    We typically measure how bad a drought is by comparing it with the historical record. With long-term changes in climate or other factors, however, a typical drought today may not have been typical in the recent past. The purpose of this study is to build a model that measures drought relative to a changing climate. Our results confirm that the model is accurate and captures previously noted climate change patterns—a drier western United States, a wetter eastern United States, earlier summer weather, and more extreme wet seasons. This is significant because this model can improve drought measurement and identify recent changes in drought.

     
    more » « less
  5. Riemannian optimization has drawn a lot of attention due to its wide applications in practice. Riemannian stochastic first-order algorithms have been studied in the literature to solve large-scale machine learning problems over Riemannian manifolds. However, most of the existing Riemannian stochastic algorithms require the objective function to be differentiable, and they do not apply to the case where the objective function is nonsmooth. In this paper, we present two Riemannian stochastic proximal gradient methods for minimizing nonsmooth function over the Stiefel manifold. The two methods, named R-ProxSGD and R-ProxSPB, are generalizations of proximal SGD and proximal SpiderBoost in Euclidean setting to the Riemannian setting. Analysis on the incremental first-order oracle (IFO) complexity of the proposed algorithms is provided. Specifically, the R-ProxSPB algorithm finds an ϵ -stationary point with O(ϵ−3) IFOs in the online case, and O(n+n‾√ϵ−2) IFOs in the finite-sum case with n being the number of summands in the objective. Experimental results on online sparse PCA and robust low-rank matrix completion show that our proposed methods significantly outperform the existing methods that use Riemannian subgradient information. 
    more » « less