skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: An optimal regulation of fluxes dictates microbial growth in and out of steady state
Effective coordination of cellular processes is critical to ensure the competitive growth of microbial organisms. Pivotal to this coordination is the appropriate partitioning of cellular resources between protein synthesis via translation and the metabolism needed to sustain it. Here, we extend a low-dimensional allocation model to describe the dynamic regulation of this resource partitioning. At the core of this regulation is the optimal coordination of metabolic and translational fluxes, mechanistically achieved via the perception of charged- and uncharged-tRNA turnover. An extensive comparison with ≈ 60 data sets from Escherichia coli establishes this regulatory mechanism’s biological veracity and demonstrates that a remarkably wide range of growth phenomena in and out of steady state can be predicted with quantitative accuracy. This predictive power, achieved with only a few biological parameters, cements the preeminent importance of optimal flux regulation across conditions and establishes low-dimensional allocation models as an ideal physiological framework to interrogate the dynamics of growth, competition, and adaptation in complex and ever-changing environments.  more » « less
Award ID(s):
2010807
PAR ID:
10485028
Author(s) / Creator(s):
;
Editor(s):
Bitbol, Anne-Florence; Walczak; Aleksandra M
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
12
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A number of hormones and growth factors stimulate target cells via the second messenger pathways, which in turn regulate cellular phenotypes. Cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that facilitates numerous signal transduction pathways; its production in cells is tightly balanced by ligand‐stimulated receptors that activate adenylate cyclases (ACs), that is, “source” and by phosphodiesterases (PDEs) that hydrolyze it, that is, “sinks.” Because it regulates various cellular functions, including cell growth and differentiation, gene transcription and protein expression, the cAMP signaling pathway has been exploited for the treatment of numerous human diseases. Reduction in cAMP is achieved by blocking “sources”; however, elevation in cAMP is achieved by either stimulating “source” or blocking “sinks.” Here we discuss an alternative paradigm for the regulation of cellular cAMP via GIV/Girdin, the prototypical member of a family of modulators of trimeric GTPases, Guanine nucleotide Exchange Modulators (GEMs). Cells upregulate or downregulate cellular levels of GIV‐GEM, which modulates cellular cAMP via spatiotemporal mechanisms distinct from the two most often targeted classes of cAMP modulators, “sources” and “sinks.” A network‐based compartmental model for the paradigm of GEM‐facilitated cAMP signaling has recently revealed that GEMs such as GIV serve much like a “tunable valve” that cells may employ to finetune cellular levels of cAMP. Because dysregulated signaling via GIV and other GEMs has been implicated in multiple disease states, GEMs constitute a hitherto untapped class of targets that could be exploited for modulating aberrant cAMP signaling in disease states.

    This article is categorized under:

    Models of Systems Properties and Processes > Mechanistic Models

    Biological Mechanisms > Cell Signaling

     
    more » « less
  2. null (Ed.)
    Supramolecular chaperones play an important role in directing the assembly of multiple protein subunits and redox-active metal ions into precise, complex and functional quaternary structures. Here we report that hydroxyl tailed C -alkylpyrogallol[4]arene ligands and redox-active Mn II ions, with the assistance of proline chaperone molecules, can assemble into two-dimensional (2D) and/or three-dimensional (3D) networked nanocapsules. Dimensionality is controlled by coordination between the exterior of nanocapsule subunits, and endohedral functionalization within the 2D system is achieved via chaperone guest encapsulation. The tailoring of surface properties of nanocapsules via coordination chemistry is also shown as an effective method for the fine-tuning magnetic properties, and electrochemical and spectroscopic studies support that the nanocapsule is an effective homogeneous water-oxidation electrocatalyst, operating at pH 6.07 with an exceptionally low overpotential of 368 mV. 
    more » « less
  3. Despite extensive investigation of job scheduling in data-intensive computation frameworks, less consideration has been given to optimizing job partitioning for resource utilization and efficient processing. Instead, partitioning and job sizing are a form of dark art, typically left to developer intuition and trial-and-error style experimentation. In this work, we propose that just as job scheduling and resource allocation are out-sourced to a trusted mechanism external to the workload, so too should be the responsibility for partitioning data as a determinant for task size. Job partitioning essentially involves determining the partition sizes to match the resource allocation at the finest granularity. This is a complex, multi-dimensional problem that is highly application specific: resource allocation, computational runtime, shuffle and reduce communication requirements, and task startup overheads all have strong influence on the most effective task size for efficient processing. Depending on the partition size, the job completion time can differ by as much as 10 times! Fortunately, we observe a general trend underlying the tradeoff between full resource utilization and system overhead across different settings. The optimal job partition size balances these two conflicting forces. Given this trend, we design Libra to automate job partitioning as a framework extension. We integrate Libra with Spark and evaluate its performance on EC2. Compared to state-of-the-art techniques, Libra can reduce the individual job execution time by 25% to 70%. 
    more » « less
  4. Abstract

    Selective partitioning of amino acids among organelles, cells, tissues, and organs is essential for cellular metabolism and plant growth. Nitrogen assimilation into glutamine and glutamate and de novo biosynthesis of most protein amino acids occur in chloroplasts; therefore, various transport mechanisms must exist to accommodate their directional efflux from the stroma to the cytosol and feed the amino acids into the extraplastidial metabolic and long-distance transport pathways. Yet, Arabidopsis (Arabidopsis thaliana) transporters functioning in plastidial export of amino acids remained undiscovered. Here, USUALLY MULTIPLE ACIDS MOVE IN AND OUT TRANSPORTER 44 (UMAMIT44) was identified and shown to function in glutamate export from Arabidopsis chloroplasts. UMAMIT44 controls glutamate homeostasis within and outside of chloroplasts and influences nitrogen partitioning from leaves to sinks. Glutamate imbalances in chloroplasts and leaves of umamit44 mutants impact cellular redox state, nitrogen and carbon metabolism, and amino acid (AA) and sucrose supply of growing sinks, leading to negative effects on plant growth. Nonetheless, the mutant lines adjust to some extent by upregulating alternative pathways for glutamate synthesis outside the plastids and by mitigating oxidative stress through the production of other amino acids and antioxidants. Overall, this study establishes that the role of UMAMIT44 in glutamate export from chloroplasts is vital for controlling nitrogen availability within source leaf cells and for sink nutrition, with an impact on growth and seed yield.

     
    more » « less
  5. Abstract

    Regulation of the homeodomain transcription factor WUSCHEL concentration is critical for stem cell homeostasis inArabidopsisshoot apical meristems. WUSCHEL regulates the transcription ofCLAVATA3through a concentration-dependent activation-repression switch.CLAVATA3, a secreted peptide, activates receptor kinase signaling to repressWUSCHELtranscription. Considering the revised regulation,CLAVATA3mediated repression ofWUSCHELtranscription alone will lead to an unstable system. Here we show thatCLAVATA3signaling regulates nuclear-cytoplasmic partitioning ofWUSCHELto control nuclear levels and its diffusion into adjacent cells. Our work also reveals that WUSCHEL directly interacts with EXPORTINS via EAR-like domain which is also required for destabilizing WUSCHEL in the cytoplasm. We develop a combined experimental and computational modeling approach that integratesCLAVATA3-mediated transcriptional repression ofWUSCHELand post-translational control of nuclear levels with the WUSCHEL concentration-dependent regulation ofCLAVATA3. We show that the dual control by the same signal forms a seamless connection between de novo WUSCHEL synthesis and sub-cellular partitioning in providing robustness to the WUSCHEL gradient.

     
    more » « less