The stellar initial mass function (IMF) is a fundamental property in the measurement of stellar masses and galaxy star formation histories. In this work, we focus on the most massive galaxies in the nearby universe
The Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) Stellar Library (MaStar) is a large collection of high-quality empirical stellar spectra designed to cover all spectral types and ideal for use in the stellar population analysis of galaxies observed in the MaNGA survey. The library contains 59,266 spectra of 24,130 unique stars with spectral resolution
- PAR ID:
- 10485037
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 163
- Issue:
- 2
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 56
- Size(s):
- Article No. 56
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract . We obtain high-quality Magellan/LDSS-3 long-slit spectroscopy with a wide wavelength coverage of 0.4–1.01μ m for 41 early-type galaxies (ETGs) in the MASSIVE survey and derive high signal-to-noise spectra within an aperture ofR e/8. Using detailed stellar synthesis models, we constrain the elemental abundances and stellar IMF of each galaxy through full spectral modeling. All the ETGs in our sample have an IMF that is steeper than a Milky Way (Kroupa) IMF. The best-fit IMF mismatch parameter,α IMF= (M /L )/(M /L )MW, ranges from 1.1 to 3.1, with an average of 〈α IMF〉 = 1.84, suggesting that on average, the IMF is more bottom heavy than Salpeter. Comparing the estimated stellar masses with the dynamical masses, we find that most galaxies have stellar masses that are smaller than their dynamical masses within the 1σ uncertainty. We complement our sample with lower-mass galaxies from the literature and confirm that is positively correlated with , , and . From the combined sample, we show that the IMF in the centers of more massive ETGs is more bottom heavy. In addition, we find that is positively correlated with both [Mg/Fe] and the estimated total metallicity [Z/H]. We find suggestive evidence that the effective stellar surface density ΣKroupamight be responsible for the variation ofα IMF. We conclude thatσ , [Mg/Fe], and [Z/H] are the primary drivers of the global stellar IMF variation. -
Abstract We combine our dynamical modeling black-hole mass measurements from the Lick AGN Monitoring Project 2016 sample with measured cross-correlation time lags and line widths to recover individual scale factors,
f , used in traditional reverberation-mapping analyses. We extend our sample by including prior results from Code for AGN Reverberation and Modeling of Emission Lines (caramel ) studies that have utilized our methods. Aiming to improve the precision of black-hole mass estimates, as well as uncover any regularities in the behavior of the broad-line region (BLR), we search for correlations betweenf and other AGN/BLR parameters. We find (i) evidence for a correlation between the virial coefficient and black-hole mass, (ii) marginal evidence for a similar correlation between and black-hole mass, (iii) marginal evidence for an anticorrelation of BLR disk thickness with and , and (iv) marginal evidence for an anticorrelation of inclination angle with , , and . Last, we find marginal evidence for a correlation between line-profile shape, when using the root-mean-square spectrum, , and the virial coefficient, , and investigate how BLR properties might be related to line-profile shape usingcaramel models. -
Abstract We present13CO(
J = 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio and the properties of the stars and ionized gas. Higher values are found in interacting galaxies compared to those in noninteracting galaxies. The global slightly increases with infrared colorF 60/F 100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged profiles for our sample up to a galactocentric radius of 0.4r 25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of are quite flat across our sample. Within galactocentric distances of 0.2r 25, the azimuthally averaged increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r 25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on , which further complicates the interpretations of variations. -
Abstract A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution function
f 0(r ,p ) at cylindrical radiusr from the jet axis (assumed to lie along thez -axis) is given by convolving the particle momentum spectrum with the Green’s function , which describes the monoenergetic spectrum solution in which asr → ∞ . Previous work by Webb et al. studied only the Green’s function solution for . In this paper, we explore for the first time, solutions for more general and realistic forms for . The flow velocity =u u (r )e z is along the axis of the jet (thez -axis). is independent ofu z , andu (r ) is a monotonic decreasing function ofr . The scattering time in the shear flow region 0 <r <r 2, and , wheres > 0 in the regionr >r 2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r ,p ) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution that particles observed at (r ,p ) originated fromr → ∞ with momentum . The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described. -
Abstract One of the cornerstone effects in spintronics is spin pumping by dynamical magnetization that is steadily precessing (around, for example, the
z -axis) with frequencyω 0due to absorption of low-power microwaves of frequencyω 0under the resonance conditions and in the absence of any applied bias voltage. The two-decades-old ‘standard model’ of this effect, based on the scattering theory of adiabatic quantum pumping, predicts that component of spin current vector is time-independent while and oscillate harmonically in time with a single frequencyω 0whereas pumped charge current is zero in the same adiabatic limit. Here we employ more general approaches than the ‘standard model’, namely the time-dependent nonequilibrium Green’s function (NEGF) and the Floquet NEGF, to predict unforeseen features of spin pumping: namely precessing localized magnetic moments within a ferromagnetic metal (FM) or antiferromagnetic metal (AFM), whose conduction electrons are exposed to spin–orbit coupling (SOC) of either intrinsic or proximity origin, will pump both spin and chargeI (t ) currents. All four of these functions harmonically oscillate in time at both even and odd integer multiples of the driving frequencyω 0. The cutoff order of such high harmonics increases with SOC strength, reaching in the one-dimensional FM or AFM models chosen for demonstration. A higher cutoff can be achieved in realistic two-dimensional (2D) FM models defined on a honeycomb lattice, and we provide a prescription of how to realize them using 2D magnets and their heterostructures.