skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 2 until 12:00 AM ET on Saturday, May 3 due to maintenance. We apologize for the inconvenience.


Title: The Chemical Composition of Extreme-velocity Stars* †
Abstract Little is known about the origin of the fastest stars in the Galaxy. Our understanding of the chemical evolution history of the Milky Way and surrounding dwarf galaxies allows us to use the chemical composition of a star to investigate its origin and to say whether it was formed in situ or was accreted. However, the fastest stars, the hypervelocity stars, are young and massive and their chemical composition has not yet been analyzed. Though it is difficult to analyze the chemical composition of a massive young star, we are well versed in the analysis of late-type stars. We have used high-resolution ARCES/3.5 m Apache Point Observatory, MIKE/Magellan spectra to study the chemical details of 15 late-type hypervelocity star candidates. With Gaia EDR3 astrometry and spectroscopically determined radial velocities we found total velocities with a range of 274–520 km s−1and mean value of 381 km s−1. Therefore, our sample stars are not fast enough to be classified as hypervelocity stars, and are what is known as extreme-velocity stars. Our sample has a wide iron abundance range of −2.5 ≤ [Fe/H] ≤ −0.9. Their chemistry indicates that at least 50% of them are accreted extragalactic stars, with iron-peak elements consistent with prior enrichment by sub-Chandrasekhar mass Type Ia supernovae. Without indication of binary companions, their chemical abundances and orbital parameters indicate that they are the accelerated tidal debris of disrupted dwarf galaxies.  more » « less
Award ID(s):
1907417 1716251
PAR ID:
10485061
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
163
Issue:
6
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 252
Size(s):
Article No. 252
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report 23 stars having Galactocentric velocities larger than 450 km s −1 in the final data release of the APOGEE survey. This sample was generated using space velocities derived by complementing the high-quality radial velocities from the APOGEE project in Sloan Digital Sky Survey’s Data Release 17 (DR17) with distances and proper motions from Gaia early Data Release 3 (eDR3). We analyze the observed kinematics and derived dynamics of these stars, considering different potential models for the Galaxy. We find that three stars could be unbound depending on the adopted potential, but in general all of the stars show typical kinematics of halo stars. The APOGEE DR17 spectroscopic results and Gaia eDR3 photometry are used to assess the stellar parameters and chemical properties of the stars. All of the stars belong to the red giant branch, and, in general, they follow the abundance pattern of typical halo stars. There are a few exceptions that would deserve further analysis through high-resolution spectroscopy. In particular, we identify a high-velocity Carbon-Enhanced Metal-Poor star, with a Galactocentric velocity of 482 km s −1 . We do not confirm any hypervelocity star in the sample, but this result is very sensitive to the adopted distances and less sensitive to the Galactic potential. 
    more » « less
  2. Abstract We present the results of the first systematic search for spectroscopic binaries within the central 2 × 3 arcsec2around the supermassive black hole at the center of the Milky Way galaxy. This survey is based primarily on over a decade of adaptive optics-fed integral-field spectroscopy (R∼ 4000), obtained as part of the Galactic Center Orbits Initiative at Keck Observatory, and it has a limitingK’-band magnitude of 15.8, which is at least 4 mag deeper than previous spectroscopic searches for binaries at larger radii within the central nuclear star cluster. From this primary data set, over 600 new radial velocities are extracted and reported, increasing by a factor of 3 the number of such measurements. We find no significant periodic signals in our sample of 28 stars, of which 16 are massive, young (main-sequence B) stars and 12 are low-mass, old (M and K giant) stars. Using Monte Carlo simulations, we derive upper limits on the intrinsic binary star fraction for the young star population at 47% (at 95% confidence) located ∼20 mpc from the black hole. The young star binary fraction is significantly lower than that observed in the field (70%). This result is consistent with a scenario in which the central supermassive black hole drives nearby stellar binaries to merge or be disrupted, and it may have important implications for the production of gravitational waves and hypervelocity stars. 
    more » « less
  3. Abstract The dwarf galaxy Triangulum (M33) presents an interesting testbed for studying stellar halo formation: it is sufficiently massive so as to have likely accreted smaller satellites, but also lies within the regime where feedback and other “in situ” formation mechanisms are expected to play a role. In this work, we analyze the line-of-sight kinematics of stars across M33 from the TREX survey, with a view to understanding the origin of its halo. We split our sample into two broad populations of varying age, comprising 2032 “old” red giant branch stars and 671 “intermediate-age” asymptotic giant branch and carbon stars. We find decisive evidence for two distinct kinematic components in both the old and intermediate-age populations: a low-dispersion (∼22 km s−1) disk-like component corotating with M33's Higas and a significantly higher-dispersion component (∼50–60 km s−1) that does not rotate in the same plane as the gas and is thus interpreted as M33's stellar halo. While kinematically similar, the fraction of stars associated with the halo component differs significantly between the two populations: this is consistently ∼10% for the intermediate-age population, but decreases from ∼34% to ∼10% as a function of radius for the old population. We additionally find evidence that the intermediate-age halo population is systematically offset from the systemic velocity of M33 by ∼25 km s−1, with a preferred central LOS velocity of ∼ − 155 km s−1. This is the first detection and characterization of an intermediate-age halo in M33, and suggests in situ formation mechanisms, as well as potentially tidal interactions, have helped shaped it. 
    more » « less
  4. Abstract In the past 5 yr, six X-ray quasi-periodic eruption (QPE) sources have been discovered in the nuclei of nearby galaxies. Their origin remains an open question. We present Multi Unit Spectroscopic Explorer integral field spectroscopy of five QPE host galaxies to characterize their properties. We find that 3/5 galaxies host extended emission-line regions (EELRs) up to 10 kpc in size. The EELRs are photoionized by a nonstellar continuum, but the current nuclear luminosity is insufficient to power the observed emission lines. The EELRs are decoupled from the stars both kinematically and in projected sky position, and the low velocities and velocity dispersions (<100 km s−1and ≲75 km s−1, respectively) are inconsistent with being driven by active galactic nuclei (AGNs) or shocks. The origin of the EELRs is likely a previous phase of nuclear activity. QPE host galaxies share several similarities with tidal disruption event (TDE) hosts, including an overrepresentation of galaxies with strong Balmer absorption and little ongoing star formation, as well as a preference for a short-lived (the typical EELR lifetime is ∼15,000 yr), gas-rich phase where the nucleus has recently faded significantly. This suggests that QPEs and TDEs may share a common formation channel, disfavoring AGN accretion disk instabilities as the origin of QPEs. If QPEs are related to extreme mass ratio inspiral systems (EMRIs), e.g., stellar-mass objects on bound orbits about massive black holes, the high incidence of EELRs and recently faded nuclei could be used to localize the hosts of EMRIs discovered by low-frequency gravitational-wave observatories. 
    more » « less
  5. As star-forming dwarf irregulars and faint spirals fall onto a cluster, their gas content is easily and quickly removed by ram-pressure stripping or other cluster forces. Residual signs of star formation cease within 100 Myr, and only after approximately 1 Gyr do their optical features transition to elliptical.Despite this, ALFALFA has uncovered a population of three “red and dead” dwarf ellipticals in the Virgo Cluster which still have detectable reservoirs of HI. These dwarf ellipticals are extremely gas-rich—as gas-rich as the cluster’s star-forming dwarf irregulars (Hallenbeck et al. 2012). Where does this gas come from? We consider two possibilities. First, that the gas is recently acquired, and has not yet had time to form stars. Second, that the gas is primordial, and has been disrupted from being able to form stars during the current epoch.We present deep optical (using CFHT and KPNO) and HI (Arecibo and VLA) observations of this sample to demonstrate that this gas is primordial. These observations show that all three galaxies have exponentially decreasing profiles characteristic of dwarf ellipticals and that their rotation velocities are extremely low. However, like more massive elliptical galaxies with HI, these dwarf galaxies show irregular optical morphology. For one target, VCC 190, we additionally observe an HI tail consistent with a recent interaction with the massive spiral galaxy NGC 4224. 
    more » « less