We present the
Using the Keck Planet Imager and Characterizer, we obtained high-resolution (
- Award ID(s):
- 1801978
- NSF-PAR ID:
- 10485107
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 162
- Issue:
- 4
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 148
- Size(s):
- Article No. 148
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract z ≈ 6 type-1 quasar luminosity function (QLF), based on the Pan-STARRS1 (PS1) quasar survey. The PS1 sample includes 125 quasars atz ≈ 5.7–6.2, with −28 ≲M 1450≲ −25. With the addition of 48 fainter quasars from the SHELLQs survey, we evaluate thez ≈ 6 QLF over −28 ≲M 1450≲ −22. Adopting a double power law with an exponential evolution of the quasar density (Φ(z ) ∝ 10k (z −6);k = −0.7), we use a maximum likelihood method to model our data. We find a break magnitude of , a faint-end slope of , and a steep bright-end slope of . Based on our new QLF model, we determine the quasar comoving spatial density atz ≈ 6 to be . In comparison with the literature, we find the quasar density to evolve with a constant value ofk ≈ −0.7, fromz ≈ 7 toz ≈ 4. Additionally, we derive an ionizing emissivity of , based on the QLF measurement. Given standard assumptions, and the recent measurement of the mean free path by Becker et al. atz ≈ 6, we calculate an Hi photoionizing rate of ΓH I(z = 6) ≈ 6 × 10−16s−1, strongly disfavoring a dominant role of quasars in hydrogen reionization. -
Abstract We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete to
M V ∼ (−7, −10) mag for galaxies atD = (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of , a potential satellite of the Local Volume galaxy NGC 55, separated by 47′ (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absoluteV -band magnitude of and an azimuthally averaged physical half-light radius of , making this one of the lowest surface brightness galaxies ever found with . This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host. -
Abstract We present a spectroscopic analysis of Eridanus IV (Eri IV) and Centaurus I (Cen I), two ultrafaint dwarf galaxies of the Milky Way. Using IMACS/Magellan spectroscopy, we identify 28 member stars of Eri IV and 34 member stars of Cen I. For Eri IV, we measure a systemic velocity of
, and velocity dispersion . Additionally, we measure the metallicities of 16 member stars of Eri IV. We find a metallicity of , and resolve a dispersion ofσ [Fe/H]=0.20 ± 0.09. The mean metallicity is marginally lower than all other known ultrafaint dwarf galaxies, making it one of the most metal-poor galaxies discovered thus far. Eri IV also has a somewhat unusual right-skewed metallicity distribution. For Cen I, we find a velocityv sys= 44.9 ± 0.8 km s−1, and velocity dispersion . We measure the metallicities of 27 member stars of Cen I, and find a mean metallicity [Fe/H] = −2.57 ± 0.08, and metallicity dispersion . We calculate the systemic proper motion, orbit, and the astrophysical J-factor for each system, the latter of which indicates that Eri IV is a good target for indirect dark matter detection. We also find no strong evidence for tidal stripping of Cen I or Eri IV. Overall, our measurements confirm that Eri IV and Cen I are dark-matter-dominated galaxies with properties largely consistent with other known ultrafaint dwarf galaxies. The low metallicity, right-skewed metallicity distribution, and high J-factor make Eri IV an especially interesting candidate for further follow-up. -
Abstract We measure the CO-to-H2conversion factor (
α CO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofα COfor CO (2–1) and (1–0), respectively. The mean values forα CO (2–1)andα CO (1–0)are and , respectively. The CO-intensity-weighted mean is 5.69 forα CO (2–1)and 3.33 forα CO (1–0). We examine howα COscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( ). Among them, , ΣSFR, and the integrated CO intensity (W CO) have the strongest anticorrelation with spatially resolvedα CO. We provide linear regression results toα COfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenα COandW CO, metallicity, , and ΣSFR. We also find thatα COin each galaxy decreases with the stellar mass surface density (Σ⋆) in high-surface-density regions (Σ⋆≥ 100M ⊙pc−2), following the power-law relations and . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inα COwith increasing Σ⋆as a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inα CO. The decrease inα COat high Σ⋆is important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors. -
Abstract The warm Neptune GJ 3470b transits a nearby (
d = 29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak Observatory, we model the classical Rossiter–McLaughlin effect, yielding a sky-projected obliquity of and a . Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity of , revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope of over a baseline of 12.9 yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b’s mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ∼1.5–1.7, which could help account for its evaporating atmosphere.