Abstract Astrometry from Gaia DR3 has enabled the discovery of a sample of 3000+ binaries containing white dwarfs (WD) and main-sequence (MS) stars in relatively wide orbits, with orbital periodsPorb= (100–1000) days. This population was not predicted by binary population synthesis models before Gaia and—if the Gaia orbits are robust—likely requires very efficient envelope ejection during common envelope evolution (CEE). To assess the reliability of the Gaia solutions, we measured multi-epoch radial velocities (RVs) of 31 WD+MS binary candidates withPorb= (40–300) days andAstroSpectroSB1orbital solutions. We jointly fit the RVs and astrometry, allowing us to validate the Gaia solutions and tighten constraints on component masses. We find a high success rate for the Gaia solutions, with only 2 out of the 31 systems showing significant discrepancies between their Gaia orbital solutions and our RVs. Joint fitting of RVs and astrometry allows us to directly constrain the secondary-to-primary flux ratio , and we find for most objects, confirming the companions are indeed WDs. We tighten constraints on the binaries’ eccentricities, finding a mediane≈ 0.1. These eccentricities are much lower than those of normal MS+MS binaries at similar periods, but much higher than predicted for binaries formed via stable mass transfer. We present MESA single and binary evolution models to explore how the binaries may have formed. The orbits of most binaries in the sample can be produced through CEE that begins when the WD progenitor is an AGB star, corresponding to initial separations of 2–5 au. Roughly 50% of all post-common envelope binaries are predicted to have first interacted on the AGB, ending up in wide orbits like these systems.
more »
« less
Wide post-common envelope binaries containing ultramassive white dwarfs: evidence for efficient envelope ejection in massive asymptotic giant branch stars
ABSTRACT Post-common envelope binaries (PCEBs) containing a white dwarf (WD) and a main-sequence (MS) star can constrain the physics of common envelope evolution and calibrate binary evolution models. Most PCEBs studied to date have short orbital periods (Porb ≲ 1 d), implying relatively inefficient harnessing of binaries’ orbital energy for envelope expulsion. Here, we present follow-up observations of five binaries from 3rd data release of Gaia mission containing solar-type MS stars and probable ultramassive WDs ($$M\gtrsim 1.2\ {\rm M}_{\odot}$$) with significantly wider orbits than previously known PCEBs, Porb = 18–49 d. The WD masses are much higher than expected for systems formed via stable mass transfer at these periods, and their near-circular orbits suggest partial tidal circularization when the WD progenitors were giants. These properties strongly suggest that the binaries are PCEBs. Forming PCEBs at such wide separations requires highly efficient envelope ejection, and we find that the observed periods can only be explained if a significant fraction of the energy released when the envelope recombines goes into ejecting it. Our one-dimensional stellar models including recombination energy confirm prior predictions that a wide range of PCEB orbital periods, extending up to months or years, can potentially result from Roche lobe overflow of a luminous asymptotic giant branch (AGB) star. This evolutionary scenario may also explain the formation of several wide WD + MS binaries discovered via self-lensing, as well as a significant fraction of post-AGB binaries and barium stars.
more »
« less
- Award ID(s):
- 2307232
- PAR ID:
- 10485176
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 527
- Issue:
- 4
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 11719-11739
- Size(s):
- p. 11719-11739
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We measure the mass distribution of main-sequence (MS) companions to hot subdwarf B stars (sdBs) in post-common envelope binaries (PCEBs). We carried out a spectroscopic survey of 14 eclipsing systems (“HW Vir binaries”) with orbital periods of 3.8 < Porb < 12 hr, resulting in a well-understood selection function and a near-complete sample of HW Vir binaries withG < 16. We constrain companion masses from the radial velocity curves of the sdB stars. The companion mass distribution peaks atMMS ≈ 0.15M⊙and drops off atMMS > 0.2M⊙, with only two systems hosting companions above the fully convective limit. There is no correlation betweenPorbandMMSwithin the sample. A similar drop-off in the companion mass distribution of white dwarf (WD) + MS PCEBs has been attributed to disrupted magnetic braking (MB) below the fully convective limit. We compare the sdB companion mass distribution to predictions of binary evolution simulations with a range of MB laws. Because sdBs have short lifetimes compared to WDs, explaining the lack of higher-mass MS companions to sdBs with disrupted MB requires MB to be boosted by a factor of 20–100 relative to MB laws inferred from the rotation evolution of single stars. We speculate that such boosting may be a result of irradiation-driven enhancement of the MS stars’ winds. An alternative possibility is that common envelope evolution favors low-mass companions in short-period orbits, but the existence of massive WD companions to sdBs with similar periods disfavors this scenario.more » « less
-
ABSTRACT Common envelope (CE) evolution, which is crucial in creating short-period binaries and associated astrophysical events, can be constrained by reverse modelling of such binaries’ formation histories. Through analysis of a sample of well-constrained white dwarf (WD) binaries with low-mass primaries (seven eclipsing double WDs, two non-eclipsing double WDs, one WD-brown dwarf), we estimate the CE energy efficiency αCE needed to unbind the hydrogen envelope. We use grids of He- and CO-core WD models to determine the masses and cooling ages that match each primary WD’s radius and temperature. Assuming gravitational wave-driven orbital decay, we then calculate the associated ranges in post-CE orbital period. By mapping WD models to a grid of red giant progenitor stars, we determine the total envelope binding energies and possible orbital periods at the point CE evolution is initiated, thereby constraining αCE. Assuming He-core WDs with progenitors of 0.9–2.0 M⊙, we find αCE ∼ 0.2–0.4 is consistent with each system we model. Significantly higher values of αCE are required for higher mass progenitors and for CO-core WDs, so these scenarios are deemed unlikely. Our values are mostly consistent with previous studies of post-CE WD binaries, and they suggest a nearly constant and low envelope ejection efficiency for CE events that produce He-core WDs.more » « less
-
Abstract Five self-lensing binaries (SLBs) have been discovered with Kepler light curves. They contain white dwarfs (WDs) in AU-scale orbits that gravitationally lens solar-type companions. Forming SLBs likely requires common envelope evolution when the WD progenitor is an AGB star and has a weakly bound envelope. No SLBs have yet been discovered with data from the Transiting Exoplanet Survey Satellite (TESS), which observes far more stars than Kepler did. Identifying self-lensing in TESS data is made challenging by the fact that TESS only observes most stars for ∼25 days at a time, so only a single lensing event will be observed for typical SLBs. TESS’s smaller aperture also makes it sensitive only to SLBs a factor of ∼100 brighter than those to which Kepler is sensitive. We demonstrate that TESS has nevertheless likely already observed ∼4 times more detectable SLBs than Kepler. We describe a search for non-repeating self-lensing signals in TESS light curves and present preliminary candidates for which spectroscopic follow-up is ongoing. We calculate the sensitivity of our search with injection and recovery tests on TESS and Kepler light curves. Based on the 5 SLBs discovered with Kepler light curves, we estimate that (1.1 ± 0.6)% of solar-type stars are orbited by WDs with periods of 100–1000 days. This implies a space density of AU-scale WD + main sequence (MS) binaries a factor of 20–100 larger than that of astrometrically identified WD + MS binaries with orbits in Gaia DR3. We conclude that the Gaia sample is still quite incomplete, mainly because WD + MS binaries can only be unambiguously identified as such for high mass ratios.more » « less
-
Abstract We created the APOGEE-GALEX-Gaia catalog to study white dwarf (WD) binaries. This database aims to create a minimally biased sample of WD binary systems identified from a combination of GALEX, Gaia, and APOGEE data to increase the number of WD binaries with orbital parameters and chemical compositions. We identify 3414 sources as WD binary candidates, with nondegenerate companions of spectral types between F and M, including main-sequence stars, main-sequence binaries, subgiants, sub-subgiants, red giants, and red clump stars. Among our findings are (a) a total of 1806 systems having inferred WD radii R < 25 R ⊕ , which constitute a more reliable group of WD binary candidates within the main sample; (b) a difference in the metallicity distribution function between WD binary candidates and the control sample of most luminous giants ( M H < −3.0); (c) the existence of a population of sub-subgiants with WD companions; (d) evidence for shorter periods in binaries that contain WDs compared to those that do not, as shown by the cumulative distributions of APOGEE radial velocity shifts; (e) evidence for systemic orbital evolution in a sample of 252 WD binaries with orbital periods, based on differences in the period distribution between systems with red clump, main-sequence binary, and sub-subgiant companions and systems with main-sequence or red giant companions; and (f) evidence for chemical enrichment during common envelope (CE) evolution, shown by lower metallicities in wide WD binary candidates ( P > 100 days) compared to post-CE ( P < 100 days) WD binary candidates.more » « less
An official website of the United States government
