Atmospheric aerosol particles with a high viscosity may become inhomogeneously mixed during chemical processing. Models have predicted gradients in condensed phase reactant concentration throughout particles as the result of diffusion and chemical reaction limitations, termed chemical gradients. However, these have never been directly observed for atmospherically relevant particle diameters. We investigated the reaction between ozone and aerosol particles composed of xanthan gum and FeCl 2 and observed the in situ chemical reaction that oxidized Fe 2+ to Fe 3+ using X-ray spectromicroscopy. Iron oxidation state of particles as small as 0.2 μm in diameter were imaged over time with a spatial resolution of tens of nanometers. We found that the loss off Fe 2+ accelerated with increasing ozone concentration and relative humidity, RH. Concentric 2-D column integrated profiles of the Fe 2+ fraction, α , out of the total iron were derived and demonstrated that particle surfaces became oxidized while particle cores remained unreacted at RH = 0–20%. At higher RH, chemical gradients evolved over time, extended deeper from the particle surface, and Fe 2+ became more homogeneously distributed. We used the kinetic multi-layer model for aerosol surface and bulk chemistry (KM-SUB) to simulate ozone reaction constrained with our observations and inferred key parameters as a function of RH including Henry's Law constant for ozone, H O3 , and diffusion coefficients for ozone and iron, D O3 and D Fe , respectively. We found that H O3 is higher in our xanthan gum/FeCl 2 particles than for water and increases when RH decreased from about 80% to dry conditions. This coincided with a decrease in both D O3 and D Fe . In order to reproduce observed chemical gradients, our model predicted that ozone could not be present further than a few nanometers from a particle surface indicating near surface reactions were driving changes in iron oxidation state. However, the observed chemical gradients in α observed over hundreds of nanometers must have been the result of iron transport from the particle interior to the surface where ozone oxidation occurred. In the context of our results, we examine the applicability of the reacto-diffusive framework and discuss diffusion limitations for other reactive gas-aerosol systems of atmospheric importance.
more »
« less
Rate of atmospheric brown carbon whitening governed by environmental conditions
Biomass burning organic aerosol (BBOA) in the atmosphere contains many compounds that absorb solar radiation, called brown carbon (BrC). While BBOA is in the atmosphere, BrC can undergo reactions with oxidants such as ozone which decrease absorbance, or whiten. The effect of temperature and relative humidity (RH) on whitening has not been well constrained, leading to uncertainties when predicting the direct radiative effect of BrC on climate. Using an aerosol flow-tube reactor, we show that the whitening of BBOA by oxidation with ozone is strongly dependent on RH and temperature. Using a poke-flow technique, we show that the viscosity of BBOA also depends strongly on these conditions. The measured whitening rate of BrC is described well with the viscosity data, assuming that the whitening is due to oxidation occurring in the bulk of the BBOA, within a thin shell beneath the surface. Using our combined datasets, we developed a kinetic model of this whitening process, and we show that the lifetime of BrC is 1 d or less below ∼1 km in altitude in the atmosphere but is often much longer than 1 d above this altitude. Including this altitude dependence of the whitening rate in a chemical transport model causes a large change in the predicted warming effect of BBOA on climate. Overall, the results illustrate that RH and temperature need to be considered to understand the role of BBOA in the atmosphere.
more »
« less
- Award ID(s):
- 1936642
- PAR ID:
- 10485352
- Publisher / Repository:
- AAAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 38
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. To better understand the effects of wildfires on air quality andclimate, it is important to assess the occurrence of chromophoric compoundsin smoke and characterize their optical properties. This study explores themolecular composition of light-absorbing organic aerosol, or brown carbon(BrC), sampled at the Missoula Fire Sciences laboratory as a part of theFIREX Fall 2016 lab intensive. A total of 12 biomass fuels from different planttypes were tested, including gymnosperm (coniferous) and angiosperm(flowering) plants and different ecosystem components such as duff, litter,and canopy. Emitted biomass burning organic aerosol (BBOA) particles werecollected onto Teflon filters and analyzed offline using high-performanceliquid chromatography coupled to a photodiode array spectrophotometer and a high-resolution mass spectrometer(HPLC–PDA–HRMS). Separated BrC chromophores were classified by theirretention times, absorption spectra, integrated absorbance in the near-UVand visible spectral range (300–700 nm), and chemical formulas from theaccurate m∕z measurements. BrC chromophores were grouped into the followingclasses and subclasses: lignin-derived products, which include lignin pyrolysisproducts; distillation products, which include coumarins and flavonoids;nitroaromatics; and polycyclic aromatic hydrocarbons (PAHs). The observedclasses and subclasses were common across most fuel types, although specific BrCchromophores varied based on plant type (gymnosperm or angiosperm) andecosystem component(s) burned. To study the stability of the observed BrCcompounds with respect to photodegradation, BBOA particle samples wereirradiated directly on filters with near UV (300–400 nm) radiation, followedby extraction and HPLC–PDA–HRMS analysis. Lifetimes of individual BrCchromophores depended on the fuel type and the corresponding combustioncondition. Lignin-derived and flavonoid classes of BrC generally hadthe longest lifetimes with respect to UV photodegradation. Moreover,lifetimes for the same type of BrC chromophores varied depending on biomassfuel and combustion conditions. While individual BrC chromophoresdisappeared on a timescale of several days, the overall light absorption bythe sample persisted longer, presumably because the condensed-phasephotochemical processes converted one set of chromophores into anotherwithout complete photobleaching or from undetected BrC chromophores thatphotobleached more slowly. To model the effect of BrC on climate, it isimportant to understand the change in the overall absorption coefficientwith time. We measured the equivalent atmospheric lifetimes of the overallBrC absorption coefficient, which ranged from 10 to 41 d, with subalpinefir having the shortest lifetime and conifer canopies, i.e., juniper, havingthe longest lifetime. BrC emitted from biomass fuel loads encompassingmultiple ecosystem components (litter, shrub, canopy) had absorptionlifetimes on the lower end of the range. These results indicate thatphotobleaching of BBOA by condensed-phase photochemistry isrelatively slow. Competing chemical aging mechanisms, such as heterogeneousoxidation by OH, may be more important for controlling the rate of BrCphotobleaching in BBOA.more » « less
-
Isoprene has a strong effect on the oxidative capacity of the troposphere due to its abundance. Under low-NOx conditions, isoprene oxidizes to form isoprene-derived epoxydiols (IEPOX), contributing significantly to secondary organic aerosol (SOA) through heterogeneous reactions. In particular, organosulfates (OSs) can form from acid-driven reactive uptake of IEPOX onto preexisting particles followed by nucleophilic addition of inorganic sulfate, and they are an important component of SOA mass, primarily in submicron particles with long atmospheric lifetimes. Fundamental understanding of SOA and OS evolution in particles, including the formation of new compounds by oxidation as well as corresponding viscosity changes, is limited, particularly across relative humidity (RH) conditions above and below the deliquescence of typical sulfate aerosol particles. In a 2-m3 indoor chamber held at various RH values (30 – 80%), SOA was generated from reactive uptake of gas-phase IEPOX onto acidic ammonium sulfate aerosols (pH = 0.5 – 2.5) and then aged in an oxidation flow reactor (OFR) for 0 – 24 days of equivalent atmospheric ·OH exposure. We investigated the extent of inorganic sulfate conversion to organosulfate, formation of oligomers, single-particle physicochemical properties, such as viscosity and phase state, and oxidation kinetics. Chemical composition of particle-phase species, as well as aerosol morphological changes, are analyzed as a function of RH, oxidant exposure times, and particle acidity to better understand SOA and OS formation and destruction mechanisms in the ambient atmosphere.more » « less
-
Abstract. Glyoxal (CHOCHO), the simplest dicarbonyl in thetroposphere, is a potential precursor for secondary organic aerosol (SOA)and brown carbon (BrC) affecting air quality and climate. The airbornemeasurement of CHOCHO concentrations during the KORUS-AQ (KORea–US AirQuality study) campaign in 2016 enables detailed quantification of lossmechanisms pertaining to SOA formation in the real atmosphere. Theproduction of this molecule was mainly from oxidation of aromatics (59 %)initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to bethe most important removal path (69 %) and contributed to roughly∼ 20 % (3.7 µg sm−3 ppmv−1 h−1,normalized with excess CO) of SOA growth in the first 6 h in SeoulMetropolitan Area. A reactive uptake coefficient (γ) of∼ 0.008 best represents the loss of CHOCHO by surface uptakeduring the campaign. To our knowledge, we show the first field observationof aerosol surface-area-dependent (Asurf) CHOCHO uptake, which divergesfrom the simple surface uptake assumption as Asurf increases in ambientcondition. Specifically, under the low (high) aerosol loading, the CHOCHOeffective uptake rate coefficient, keff,uptake, linearly increases(levels off) with Asurf; thus, the irreversible surface uptake is areasonable (unreasonable) approximation for simulating CHOCHO loss toaerosol. Dependence on photochemical impact and changes in the chemical andphysical aerosol properties “free water”, as well as aerosol viscosity,are discussed as other possible factors influencing CHOCHO uptake rate. Ourinferred Henry's law coefficient of CHOCHO, 7.0×108 M atm−1, is ∼ 2 orders of magnitude higher than thoseestimated from salting-in effects constrained by inorganic salts onlyconsistent with laboratory findings that show similar high partitioning intowater-soluble organics, which urges more understanding on CHOCHO solubilityunder real atmospheric conditions.more » « less
-
Abstract Furans are a major class of volatile organic compounds emitted from biomass burning. Their high reactivity with atmospheric oxidants leads to the formation of secondary organic aerosol (SOA), including secondary brown carbon (BrC) that can affect global climate via interactions with solar radiation. Here, we investigate the optical properties and chemical composition of SOA generated via photooxidation of furfural, 2‐methylfuran, and 3‐methylfuran under dry (RH < 5%) and humid (RH ∼ 50%) conditions in the presence of nitrogen oxides (NOx) and ammonium sulfate seed aerosol. Dry furfural oxidation has the greatest BrC formation, including reduced nitrogen‐containing organic compounds (NOCs) in SOA, which are dominated by amines and amides formed from reactions between carbonyls and ammonia/ammonium. Based on the products detected, we propose novel formation pathways of NOCs in furfural photooxidation, which can contribute to BrC via accretion reactions during the photochemical aging of biomass burning plumes.more » « less
An official website of the United States government

