To use planktic foraminiferal tests as paleoproxy substrates, it is necessary to delineate environmental versus biological controls on trace element incorporation. Here we utilize laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to explore interspecies, chamber-to-chamber, and intratest trace element (i.e., Mg, Na, Sr, Ba, Mn, Zn) variability in thickly-calcified specimens of the polar and subpolar planktic foraminifera Neogloboquadrina incompta, N. pachyderma, and Turborotalita quinqueloba collected from plankton tows in the Northern California Current. Among the study taxa, test Mg/Ca, Na/Ca, and Sr/Ca are likely dominantly controlled by depth habitat. The neogloboquadrinids record higher Ba/Ca and Mn/Ca, and also show positive covariance between these elements, possibly due to calcifying in an oxygen-depleted marine snow microhabitat. Trace elements are found to be more enriched in the lamellar calcite than the outer chamber wall dominated by gametogenic crust. The data presented herein provide insight into potential vital effects, paleoproxy considerations, ontogeny, and biomineralization processes. 
                        more » 
                        « less   
                    
                            
                            Geochemical Differences Between Alive, Uncrusted and Dead, Crusted Shells of Neogloboquadrina pachyderma: Implications for Paleoreconstruction
                        
                    
    
            Planktic foraminiferal-based trace element-calcium ratios (TE/Ca) are a cornerstone in paleoceanographic reconstructions. While TE-environment calibrations are often established through culturing experiments, shell growth in culture is not always consistent with growth in a natural setting. For example, many species of planktic foraminifera thicken their shell at the end of their life cycle, producing a distinct “gametogenic” crust. Crust is common in fossil foraminifers, however, shells grown in culture do not often develop a thick crust. Here, we investigate potential vital effects associated with the crusting process by comparing the trace element (Mg/Ca, Na/Ca, Ba/Ca, Sr/Ca, Mn/Ca, Zn/Ca) and stable isotope (δ13C, δ18O) composition of alive, fully mature, uncrusted shells to recently deceased, crusted shells of Neogloboquadrina pachyderma collected from the same plankton tows off the Oregon (USA) coast. We find that uncrusted (N = 55) shells yield significantly higher Ba/Ca, Na/Ca, Mn/Ca, and Sr/Ca than crusted (N = 66) shells, and crust calcite records significantly lower TE/Ca values for all elements examined. Isotopic mixing models suggest that the crust calcite accounts for ∼40%–70% of crusted shell volume. Comparison of foraminiferal and seawater isotopes indicate that N. pachyderma lives in the upper 90 m of the water column, and that crust formation occurs slightly deeper than their average living depth habitat. Results highlight the necessity to establish calibrations from crusted shells, as application of calibrations from TE-enriched uncrusted shells may yield attenuated or misleading paleoceanographic reconstructions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2306057
- PAR ID:
- 10534555
- Publisher / Repository:
- American Geophysical Union
- Date Published:
- Journal Name:
- Paleoceanography and paleoclimatology an AGU journal exploring earths paleoclimate
- ISSN:
- 2572-4525
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT The trace element composition of planktic foraminifera shells is influenced by both environmental and biological factors (‘vital effects’). As trace elements in individual foraminifera shells are increasingly used as paleoceanographic tools, understanding how trace element ratios vary between individuals, among species, and in response to high frequency environmental variability is of critical importance. Here, we present a three-year plankton tow record (2010–2012) of individual shell trace element (Mg, Sr, Ba, and Mn) to Ca ratios in the planktic species Globigerina ruber (pink), Orbulina universa, and Globorotalia menardii collected throughout the upper 100 m of Cariaco Basin. Plankton tows were paired with in situ measurements of water column chemistry and hydrography. The Mg/Ca ratio reflects different calcification temperatures in all three species when calculated using species-specific temperature relationships from single-species averages of Mg/Ca. However, individual shell Mg/Ca often results in unrealistic temperate estimates. The Sr/Ca ratios are relatively constant among the four species. Ratios of Mn/Ca and Ba/Ca are highest in G. menardii and are not reflective of elemental concentrations in open waters. The Mn/Ca ratio is elevated in all species during upwelling conditions, and a similar trend is demonstrated in Neogloboquadrina incompta shells from the California margin collected during upwelling periods. Together this suggests that elevated shell Mn/Ca may act as a tracer for upwelling of deeper water masses. Our results emphasize the large degree of trace element variability present among and within species living within a limited depth habitat and the roles of biology, calcification environment, and physical mixing in mediating how trace element geochemistry reflects environmental variability in the surface ocean.more » « less
- 
            Abstract Neogloboquadrina pachyderma is the dominant species of planktonic foraminifera found in polar waters and is therefore invaluable for paleoceanographic studies of the high latitudes. However, the geochemistry of this species is complicated due to the development of a thick calcite crust in its final growth stage and at greater depths within the water column. We analyzed the in situ Mg/Ca and δ18O in discrete calcite zones using laser ablation‐inductively coupled plasma‐mass spectrometry, electron probe microanalysis, and secondary ion mass spectrometry within modern N. pachyderma shells from the highly dynamic Fram Strait and the seasonally isothermal/isohaline Irminger Sea. Here we compare shell geochemistry to the measured temperature, salinity, and δ18Osw in which the shells calcified to better understand the controls on N. pachyderma geochemical heterogeneity. We present a relationship between Mg/Ca and temperature in N. pachyderma lamellar calcite that is significantly different than published equations for shells that contained both crust and lamellar calcite. We also document highly variable secondary ion mass spectrometry δ18O results (up to a 3.3‰ range in single shells) on plankton tow samples which we hypothesize is due to the granular texture of shell walls. Finally, we document that the δ18O of the crust and lamellar calcite of N. pachyderma from an isothermal/isohaline environment are indistinguishable from each other, indicating that shifts in N. pachyderma δ18O are primarily controlled by changes in environmental temperature and/or salinity rather than differences in the sensitivities of the two calcite types to environmental conditions.more » « less
- 
            Abstract Neogloboquadrina pachydermais the dominant species of planktonic foraminifera found in polar waters and is therefore invaluable for paleoceanographic studies of the high latitudes. However, the geochemistry of this species is complicated due to the development of a thick calcite crust in its final growth stage and at greater depths within the water column. We analyzed the in situ Mg/Ca and δ18O in discrete calcite zones using laser ablation‐inductively coupled plasma‐mass spectrometry, electron probe microanalysis, and secondary ion mass spectrometry within modernN. pachydermashells from the highly dynamic Fram Strait and the seasonally isothermal/isohaline Irminger Sea. Here we compare shell geochemistry to the measured temperature, salinity, and δ18Oswin which the shells calcified to better understand the controls onN. pachydermageochemical heterogeneity. We present a relationship between Mg/Ca and temperature inN. pachydermalamellar calcite that is significantly different than published equations for shells that contained both crust and lamellar calcite. We also document highly variable secondary ion mass spectrometry δ18O results (up to a 3.3‰ range in single shells) on plankton tow samples which we hypothesize is due to the granular texture of shell walls. Finally, we document that the δ18O of the crust and lamellar calcite ofN. pachydermafrom an isothermal/isohaline environment are indistinguishable from each other, indicating that shifts inN. pachydermaδ18O are primarily controlled by changes in environmental temperature and/or salinity rather than differences in the sensitivities of the two calcite types to environmental conditions.more » « less
- 
            Oxygen limited marine environments, such as oxygen minimum zones, are of profound importance for global nutrient cycling and vertical habitat availability. While it is understood that the extent and intensity of oxygen minimum zones are responsive to climate, the limited suite of viable proxies for low oxygen pelagic environments continues to pose a real barrier for paleoclimate interpretations. Here we investigate the proxy potential of an array of trace element (Mg, Mn, Zn, and Sr) to Ca ratios from the shells of Globorotaloides hexagonus , a planktic foraminifer endemic to tropical through temperate oxygen minimum zones. A species-specific relationship between Mg/Ca and temperature is proposed for quantitative reconstruction of oxygen minimum zone paleotemperatures. Both Mn/Ca and Zn/Ca ratios vary with oxygen concentration and could be useful for reconstructing G. hexagonus habitat where the primary signal can be d\istinguished from diagenetic overprinting. Finally, a robust correlation between Sr/Ca ratios and dissolved oxygen demonstrates a role for Sr as an indicator of oxygen minimum zone intensity, potentially via foraminiferal growth rate. The analysis of these relatively conventional trace element ratios in the shells of an oxygen minimum zone species has tremendous potential to facilitate multiproxy reconstructions from this enigmatic environment.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    