Abstract This work introduces a mixed‐transducer micro‐origami to achieve efficient vibration, controllable motion, and decoupled sensing. Existing micro‐origami systems tend to have only one type of transducer (actuator/sensor), which limits their versatility and functionality because any given transducer system has a narrow range of advantageous working conditions. However, it is possible to harness the benefit of different micro‐transducer systems to enhance the performance of functional micro‐origami. More specifically, this work introduces a micro‐origami system that can integrate the advantages of three transducer systems: strained morph (SM) systems, polymer based electro‐thermal (ET) systems, and thin‐film lead zirconate titanate (PZT) systems. A versatile photolithography fabrication process is introduced to build this mixed‐transducer micro‐origami system, and their performance is investigated through experiments and simulation models. This work shows that mixed‐transducer micro‐origami can achieve power efficient vibration with high frequency, large vibration ranges, and little degradation; can produce decoupled folding motion with good controllability; and can accomplish simultaneous sensing and actuation to detect and interact with external environments and small‐scale samples. The superior performance of mixed‐transducer micro‐origami systems makes them promising tools for micro‐manipulation, micro‐assembly, biomedical probes, self‐sensing metamaterials, and more.
more »
« less
Perspectives on Energy Transport at the Micro/Nanoscale
Over the last two decades, with the fast development of micro/nanomaterials, including micro/nanoscale and micro/nanostructured materials, significant attention has been attracted to study the energy transport in them [...]
more »
« less
- Award ID(s):
- 1930866
- PAR ID:
- 10485698
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Nanomaterials
- Volume:
- 13
- Issue:
- 11
- ISSN:
- 2079-4991
- Page Range / eLocation ID:
- 1746
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
IntroductionEarly and accurate diagnosis of autism spectrum disorder (ASD) is crucial for effective intervention, yet it remains a significant challenge due to its complexity and variability. Micro-expressions are rapid, involuntary facial movements indicative of underlying emotional states. It is unknown whether micro-expression can serve as a valid bio-marker for ASD diagnosis. MethodsThis study introduces a novel machine-learning (ML) framework that advances ASD diagnostics by focusing on facial micro-expressions. We applied cutting-edge algorithms to detect and analyze these micro-expressions from video data, aiming to identify distinctive patterns that could differentiate individuals with ASD from typically developing peers. Our computational approach included three key components: (1) micro-expression spotting using Shallow Optical Flow Three-stream CNN (SOFTNet), (2) feature extraction via Micron-BERT, and (3) classification with majority voting of three competing models (MLP, SVM, and ResNet). ResultsDespite the sophisticated methodology, the ML framework's ability to reliably identify ASD-specific patterns was limited by the quality of video data. This limitation raised concerns about the efficacy of using micro-expressions for ASD diagnostics and pointed to the necessity for enhanced video data quality. DiscussionOur research has provided a cautious evaluation of micro-expression diagnostic value, underscoring the need for advancements in behavioral imaging and multimodal AI technology to leverage the full capabilities of ML in an ASD-specific clinical context.more » « less
-
Abstract Recent progress in artificial nanomachines offers promising solutions to grand challenges in biochemical delivery and diagnostics. In this work, advances of micro/nanomachines made of synthesized micro/nanostructures for applications in delivery and detection of biomolecules are reviewed, along with a discussion of pros and cons of each type of machine. The review of micro/nanomachines is categorized according to their working mechanisms, including motion actuation realized by magnetic, electric, and acoustic fields and chemical reactions. The developments of micro/nanomachines are discussed in depth in the fabrication, propulsion, and motion control, loading and releasing of micro/nanosubstances, and biochemical sensing. The rapid development of man‐made miniaturized machines paves the road toward future intelligent nanorobots and nanofactories that can revolutionize society.more » « less
-
Abstract MXenes are a class of 2D materials that have gained significant attention for their potential applications in energy storage, electromagnetic interference shielding, biomedicine, and (opto)electronics. Despite their broad range of applications, a detailed understanding of the internal architecture of MXene‐based materials remains limited due to the lack of effective 3D imaging techniques. This work demonstrates the application of X‐ray micro‐computed tomography (micro‐CT) to investigate various MXene systems, including nanocomposites, coated textiles, and aerogels. Micro‐CT enables high‐resolution, 3D visualization of the internal microstructure, MXene distribution, infiltration patterns, and defect formations, which significantly influence the material's performance. Moreover, the typical technical challenges and limitations encountered during sample preparation, scanning, and post‐processing of micro‐CT data are discussed. The information obtained from optical and electron microscopy is also compared with micro‐CT, highlighting the unique advantages of micro‐CT in providing comprehensive 3D imaging and quantitative data. This study highlights micro‐CT as a powerful and nondestructive imaging tool for characterizing MXene‐based materials, providing insights into material optimization and guidelines for developing future advanced applications.more » « less
-
By combining mask-less lithography and chemical vapor deposition (CVD) techniques, a novel two-stage diamond anvil has been fabricated. A nanocrystalline diamond (NCD) micro-anvil 30 μm in diameter was grown at the center of a [100]-oriented, diamond anvil by utilizing microwave plasma CVD method. The NCD micro-anvil has a diamond grain size of 115 nm and micro-focused Raman and X-ray Photoelectron spectroscopy analysis indicate sp3-bonded diamond content of 72%. These CVD grown NCD micro-anvils were tested in an opposed anvil configuration and the transition metals osmium and tungsten were compressed to high pressures of 264 GPa in a diamond anvil cell.more » « less
An official website of the United States government

