skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Dispersion characteristics and mechanical properties of epoxy nanocomposites reinforced with carboxymethyl cellulose functionalized nanodiamond, carbon nanotube, and graphene
Abstract Carbon‐based nanoparticles are widely regarded as promising nanofillers in nanocomposites to pursue advanced properties. To date, there has been a lack of systematic investigation into the structural variations of nanofillers and their influences on dispersion characteristics, as well as the resulting mechanical properties of nanocomposites. In this study, nanodiamond (ND), carbon nanotube (CNT), and graphene (GNP) were selected as the representative zero‐, one‐, and two‐dimensional nanofillers, respectively. A novel functionalization technique utilizing carboxymethyl cellulose (CMC) was employed to disperse nanofillers. The various characterization techniques and experimental results revealed that CMC functionalization was effective in reducing the agglomeration and improving the distribution uniformity of all three nanofillers. Among the three nanofillers, zero‐dimensional ND exhibited the most homogeneous dispersion quality in epoxy nanocomposites. The strongest abrasion resistance was found in ND‐reinforced epoxy nanocomposites, while CNT‐reinforced epoxy nanocomposites exhibited the best tensile properties. HighlightsNanodiamond with a spherical structure had better dispersion characteristics.Cylindrical carbon nanotube and planar graphene tended to agglomerate.Nanodiamond reinforced nanocomposites had better abrasion resistance.Carbon nanotube reinforced nanocomposites had better tensile properties.Carboxymethyl cellulose functionalization was valid for all three nanofillers.  more » « less
Award ID(s):
2331017
PAR ID:
10485721
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer Composites
Volume:
45
Issue:
1
ISSN:
0272-8397
Format(s):
Medium: X Size: p. 398-412
Size(s):
p. 398-412
Sponsoring Org:
National Science Foundation
More Like this
  1. Carbon nanotube (CNT)/epoxy nanocomposites have a great potential of possessing many advanced properties. However, the homogenization of CNT dispersion is still a great challenge in the research field of nanocomposites. This study applied a novel dispersion agent, carboxymethyl cellulose (CMC), to functionalize CNTs and improve CNT dispersion in epoxy. The effectiveness of the CMC functionalization was compared with mechanical mixing and a commonly used surfactant, sodium dodecylbenzene sulfonate (NaDDBS), regarding dispersion, mechanical and corrosion properties of CNT/epoxy nanocomposites with three different CNT concentrations (0.1%, 0.3% and 0.5%). The experimental results of Raman spectroscopy, particle size analysis and transmission electron microscopy showed that CMC functionalized CNTs reduced CNT cluster sizes more efficiently than NaDDBS functionalized and mechanically mixed CNTs, indicating a better CNT dispersion. The peak particle size of CMC functionalized CNTs reduced as much as 54% (0.1% CNT concentration) and 16% (0.3% CNT concentration), compared to mechanical mixed and NaDDBS functionalized CNTs. Because of the better dispersion, it was found by compressive tests that CNT/epoxy nanocomposites with CMC functionalization resulted in 189% and 66% higher compressive strength, 224% and 50% higher modulus of elasticity than those with mechanical mixing and NaDDBS functionalization respectively (0.1% CNT cencentration). In addition, electrochemical corrosion tests also showed that CNT/epoxy nanocomposites with CMC functionalization achieved lowest corrosion rate (0.214 mpy), the highest corrosion resistance (201.031 Ω·cm2), and the lowest porosity density (0.011%). 
    more » « less
  2. In order to achieve effective monitoring of concrete structures for sound structural health, the addition of carbon nanotubes (CNTs) into cementitious materials offers a promising solution for fabricating CNT-modified smart concrete with self-sensing ability. This study investigated the influences of CNT dispersion method, water/cement (W/C) ratio, and concrete constituents on the piezoelectric properties of CNT-modified cementitious materials. Three CNT dispersion methods (direct mixing, sodium dodecyl benzenesulfonate (NaDDBS) and carboxymethyl cellulose (CMC) surface treatment), three W/C ratios (0.4, 0.5, and 0.6), and three concrete constituent compositions (pure cement, cement/sand, and cement/sand/coarse aggregate) were considered. The experimental results showed that CNT-modified cementitious materials with CMC surface treatment had valid and consistent piezoelectric responses to external loading. The piezoelectric sensitivity improved significantly with increased W/C ratio and reduced progressively with the addition of sand and coarse aggregates. 
    more » « less
  3. Reinforcing composite materials with carbon nanotubes (CNTs) has the potential to improve mechanical and/or multifunctional properties due to their nano-size. Research has been done on using CNTs to reinforce the interlaminar strength of carbon fiber reinforced composites (CFRPs), but most of the previous work is about randomly oriented carbon nanotubes. Currently, one of the main challenges regarding CNT integration into polymers is mitigating their agglomeration and controlling their dispersion in the polymer matrix. By aligning CNTs with an external field, more tailored structure control can be achieved, and a better understanding of how CNT agglomeration and dispersion relate to external field application and CNT concentration is needed. In this work, we studied the effects of magnetic field magnitude, CNT concentration, and matrix viscosity on CNT agglomeration and morphology. We measured the fracture toughness reinforcement of epoxy-CNT nanocomposites at various CNT concentrations (0.1 vol.% and 0.5 vol.%), magnetic field magnitudes (no field, 180 G, and 300 G), and matrix viscosities (older epoxy-hardener system with higher viscosity and newer epoxy-hardener system with lower viscosity). Our results demonstrated that aligning CNTs with a magnetic field can lead to extra reinforcement when compared to using randomly oriented CNTs if the field magnitude, CNT concentration, and matrix viscosity are selected accordingly. The maximum fracture toughness reinforcement achieved with the higher viscosity epoxy-hardener system (~72%) was with 0.5 vol.% of CNTs with a 180 G field, whereas the maximum reinforcement with the lower viscosity epoxy-hardener system (~62%) was observed for the samples fabricated with 0.1 vol.% of randomly oriented CNTs. COMSOL simulations were also conducted to understand the behavior of CNT agglomeration and alignment at different field magnitudes and CNT concentrations, and were compared with the experimental results. To maximize CNT reinforcement, more work needs to be conducted to address the challenge of CNT agglomeration and dispersion control in a polymer matrix, such as a more in-depth study of how different field magnitudes affect fracture toughness improvement and new methods to improve CNT dispersion. 
    more » « less
  4. Carbon nanotubes (CNTs), as they possess outstanding mechanical properties and low density, are considered as one of the most promising reinforcements in composite structures. Due to their capability of transferring loads, CNTs in long continuous forms such as yarns and tapes can withstand 20 times as much load as steel can do at the same weight. In this research, carbon nanotube yarns were wound onto an aluminum plate using a custom-built fixture to fabricate a unidirectional strip. Then, by brushing epoxy resin on the strip and laminating four layers, the unidirectional CNT reinforced epoxy resin composite beam specimens were produced. The mechanical properties of the unidirectional CNT-reinforced composite (CNTRC) were determined using standard tensile tests. This study presents a method for manufacturing CNTRC out of CNT yarns, determining the CNTRC’s Young’s modulus as well as the tensile strength, and obtaining its strain field via digital image correlation (DIC) method. It is observed that the pressure due to sandwiching of the aluminum plates during the manufacturing process leads to nonuniformity of the specimen in the width along midspan of the longitudinal direction which results in the specimen’s not being perfectly unidirectional. This phenomenon can cause the matrix cracking in tensile test and reduce the ultimate tensile strength up to 78% in comparison with perfectly unidirectional specimens. However, the Young’s modulus of such composites is comparable with those obtained from previously existing research. Also, Results from DIC showed the possible failure prone areas in the specimens, as it presents a up to 64% difference between the highest and lowest strain in the tensile loading direction through the specimens. This study will serve as a foundation for future research involving CNT composites, particularly the use of their high anisotropy to produce auxetic composites with large negative Poisson’s ratios. 
    more » « less
  5. Abstract Dispersing carbon nanomaterials in solvents is effective in transferring their significant mechanical and functional properties to polymers and nanocomposites. However, poor dispersion of carbon nanomaterials impedes exploiting their full potential in nanocomposites. Cellulose nanocrystals (CNCs) are promising for dispersing and stabilizing pristine carbon nanotubes (pCNTs) and graphene nanoplatelets (pGnP) in protic media without functionalization. Here, the underlying mechanisms at the molecular level are investigated between CNC and pCNT/pGnP that stabilize their dispersion in polar solvents. Based on the spectroscopy and microscopy characterization of CNCpCNT/pGnP and density functional theory (DFT) calculations, an additional intermolecular mechanism is proposed between CNC and pCNT/pGnP that forms carbonoxygen covalent bonds between hydroxyl end groups of CNCs and the defected sites of pCNTs/pGnPs preventing re‐agglomeration in polar solvents. This work's findings indicate that the CNC‐assisted process enables new capabilities in harnessing nanostructures at the molecular level and tailoring the performance of nanocomposites at higher length scales. 
    more » « less