Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Polymer‐clay nanocomposites (PCNs) are commonly applied as multi‐functional structural materials with exceptional thermomechanical properties, while maintaining the characteristics of lightweight and optical clarity. In this study, building upon previously developed coarse‐grained (CG) models for nanoclay and poly (methyl methacrylate) (PMMA), we employ molecular dynamics (MD) simulations to systematically investigate the thermomechanical properties of PCNs when arranged in stacked configurations. Incorporating stacked clay nanofillers into a polymer matrix, we systematically conduct shear and tensile simulations to investigate the influences of variations in weight percentage, system temperature, and nanoclay size on the thermomechanical properties of PCNs at a fundamental level. The weight percentage of nanoclay in nanocomposites proves to have a significant influence on both the shear and Young's modulus (e.g., the addition of 10 Wt% nanoclay leads to an increase of 32.6% in the Young's modulus), with each exhibiting greater mechanical strength in the in‐plane direction compared to the out‐of‐plane direction, and the disparity between these two directions further widens with an increase in the weight percentage of nanoclay. Furthermore, the increase in the size of nanoclay contributes to an overall modulus enhancement in the composite while the growth reaches a saturation point after a certain threshold of about 10 nm. Our simulation results indicate that the overall dynamics of PMMA are suppressed due to the strong interactions between nanoclay and PMMA, where the confinement effect on local segmental dynamics of PMMA decays from the nanoclay‐polymer interface to the polymer matrix. Our findings provide valuable molecular‐level insights into microstructural and dynamical features of PCNs under deformation, emphasizing the pivotal role of clay‐polymer interface in influencing the thermomechanical properties of the composite materials. HighlightsCG modeling is performed to explore the thermomechanical behavior of PCN.Effects of nanoclay weight percentage and size on modulus are studied.Interface leads to nanoconfinement effect onTgand molecular stiffness.Correlations between molecular stiffness and modulus are identified.Simulations show spatial variation of dynamical heterogeneity.more » « less
-
Abstract Carbon‐based nanoparticles are widely regarded as promising nanofillers in nanocomposites to pursue advanced properties. To date, there has been a lack of systematic investigation into the structural variations of nanofillers and their influences on dispersion characteristics, as well as the resulting mechanical properties of nanocomposites. In this study, nanodiamond (ND), carbon nanotube (CNT), and graphene (GNP) were selected as the representative zero‐, one‐, and two‐dimensional nanofillers, respectively. A novel functionalization technique utilizing carboxymethyl cellulose (CMC) was employed to disperse nanofillers. The various characterization techniques and experimental results revealed that CMC functionalization was effective in reducing the agglomeration and improving the distribution uniformity of all three nanofillers. Among the three nanofillers, zero‐dimensional ND exhibited the most homogeneous dispersion quality in epoxy nanocomposites. The strongest abrasion resistance was found in ND‐reinforced epoxy nanocomposites, while CNT‐reinforced epoxy nanocomposites exhibited the best tensile properties. HighlightsNanodiamond with a spherical structure had better dispersion characteristics.Cylindrical carbon nanotube and planar graphene tended to agglomerate.Nanodiamond reinforced nanocomposites had better abrasion resistance.Carbon nanotube reinforced nanocomposites had better tensile properties.Carboxymethyl cellulose functionalization was valid for all three nanofillers.more » « less
-
Free, publicly-accessible full text available November 13, 2026
-
Free, publicly-accessible full text available October 14, 2026
-
This first-principles study investigates the interactions between amino acids and various types of montmorillonite clay surfaces, including a pristine surface, a surface with an oxygen vacancy, a surface with a silicon vacancy, and an Fe-doped surface. Our results show that all clay surfaces exhibit negative binding energies, indicating that the interaction between clay and amino acids is thermodynamically favorable. Among them, the surface with a Si vacancy displays the most negative binding energy, corresponding to the strongest interaction. We also examine the reactions between two alanine molecules to form a dipeptide molecule through the elimination of a water molecule in the absence of clay surfaces. The transition state search suggests that a proton transfer plays a critical role in the peptide bond formation based on structural and energetic features observed along the reaction path. Circular dichroism spectra computed for reactant, intermediate, and product states show distinct chiral signatures. Wave packet dynamics calculations indicate that quantum tunneling might be the mechanism underlying the reduced activation energy at low temperatures. These findings offer insight into the physicochemical processes at clay–amino acid interfaces and support the design of clay-based materials with applications in biotechnology and prebiotic chemistry.more » « lessFree, publicly-accessible full text available June 30, 2026
-
Free, publicly-accessible full text available May 27, 2026
An official website of the United States government
