skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enhanced Optical Contrast and Switching in Near‐Infrared Electrochromic Devices by Optimizing Conjugated Polymer Oligo(Ethylene Glycol) Sidechain Content and Gel Electrolyte Composition
Abstract A detailed investigation addressing the effects of functionalizing conjugated polymers with oligo(ethylene glycol) (EGn) sidechains on the performance and polymer‐electrolyte compatibility of electrochromic devices (ECDs) is reported. The electrochemistry for a series of donor‐acceptor copolymers having near‐infrared (NIR)‐optical absorption, where the donor fragment is 3,4‐ethylenedioxythiophene (EDOT) or an EGnfunctionalized bithiophene (g2T) and the acceptor fragment is diketopyrrolopyrrole (DPP) functionalized with branched alkyl or EGnsidechains, is extensively probed. ECDs are next fabricated and it is found that EGnsidechain incorporation must be finely balanced to promote polymer‐electrolyte compatibility and provide efficient ion exchange. Proper electrolyte‐cation pairing and polymer structural tuning affords a 2x increase in optical contrast (from 12% to 24%) and >60x reduction in switching time (from 20 to 0.3 s). Atomic force microscopy (AFM)/grazing incidence wide‐angle X‐ray scattering (GIWAXS) characterization of the polymer film morphology/microstructure reveals that an over‐abundance of EGnsidechains generates large polymer crystallites, which can suppress ion exchange. Lastly, time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) indicates sidechain/electrolyte identity does not influence the electrolyte penetration depth into the films, and EGnsidechain inclusion increases electrolyte cation uptake. The material structural design insight and guidelines regarding the polymer‐electrolyte ion insertion/expulsion dynamics reported here should be of significant utility for developing next‐generation mixed ionic‐electronic conducting materials.  more » « less
Award ID(s):
2223922
PAR ID:
10485955
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
34
Issue:
2
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Photoinduced electron transfer (PET) in newly assembled dyads formedviametal‐ligand axial coordination of phenylimidazole‐functionalized bis(styryl)BODIPY (BODIPY(Im)2) and zinc tetrapyrroles, that is, zinc tetratolylporphyrin (ZnP), zinc tetra‐t‐butyl phthalocyanine (ZnPc) and zinc tetra‐t‐butyl naphthalocyanine (ZnNc), in non‐coordinatingo‐dichlorobenzene (DCB) is investigated using both steady‐state and time‐resolved transient absorption techniques. The structure of the BODIPY(Im)2was identified by using single crystal X‐ray structural analysis. The newly formed supramolecular dyads were fully characterized by spectroscopic, computational and electrochemical methods. The binding constants measured from optical absorption spectral studies were in the range of ∼104 M−1for the first zinc tetrapyrrole binding and suggested that the two imidazole entities of bis(styryl)BODIPY behave independently in the binding process. The energy level diagram established using spectral and electrochemical studies suggested PET to be thermodynamically unfavorable in the ZnP‐bearing complex while for ZnPc‐ and ZnNc‐bearing complexes such a process is possible when zinc tetrapyrrole is selectively excited. Consequently, occurrence of efficient PET in the latter two dyads was possible to establish from femtosecond transient absorption studies wherein the electron transfer products, that is, the radical cation of zinc tetrapyrrole and the radical anion of BODIPY(Im)2, was possible to spectrally identify. From target analysis of the transient data, time constants of circa 3 ns for ZnPc⋅+:BODIPY⋅and circa 0.5 ns for ZnNc⋅+:BODIPY⋅were obtained indicating persistence of the radical ion‐pair to some extent. The electron acceptor property of bis(styryl)BODIPY in donor‐acceptor conjugates is borne out from the present study. 
    more » « less
  2. Emerging wearable devices would benefit from integrating ductile photovoltaic light-harvesting power sources. In this work, we report a small-molecule acceptor (SMA), also known as a non–fullerene acceptor (NFA), designed for stretchable organic solar cell (s-OSC) blends with large mechanical compliance and performance. Blends of the organosilane-functionalized SMA BTP-Si4 with the polymer donor PNTB6-Cl achieved a power conversion efficiency (PCE) of >16% and ultimate strain (εu) of >95%. Typical SMAs suppress OSC blend ductility, but the addition of BTP-Si4 enhances it. Although BTP-Si4 is less crystalline than other SMAs, it retains considerable electron mobility and is highly miscible with PNTB6-Cl and is essential for enhancing εu. Thus,s-OSCs with PCE > 14% and operating normally under various deformations (>80% PCE retention under an 80% strain) were demonstrated. Analysis of several SMA-polymer blends revealed general molecular structure–miscibility–stretchability relationships for designing ductile blends. 
    more » « less
  3. Abstract Förster resonance energy transfer (FRET) is an established tool for measuring distances between two molecules (donor and acceptor) on the nanometer scale. In the field of polymer science, the use of FRET to measure polymer end‐to‐end distances (Ree) often requires complex synthetic steps to label the chain ends with the FRET pair. This work reports an anthracene‐functionalized chain‐transfer agent for reversible addition‐fragmentation chain‐transfer (RAFT) polymerization, enabling the synthesized chains to be directly end‐labeled with a donor and acceptor without the need for any post‐polymerization functionalization. Noteworthily, this FRET method allows for chain conformation measurements of low molecular weight oligomers in situ, without any work‐up steps. Using FRET to directly measure the averageReeof the oligomer chains during polymerization, the chain growth of methyl methacrylate, styrene, and methyl acrylate is investigated as a function of reaction time, including determining their degree of polymerization (DP). It is found thatDPresults from FRET are consistent with other established measurement methods, such as nuclear magnetic resonance (NMR) spectroscopy. Altogether, this work presents a broadly applicable and straightforward method to in situ characterizeReeof low molecular weight oligomers and theirDPduring reaction. 
    more » « less
  4. null (Ed.)
    Brønsted acid catalyzed formal [4 + 4]-, [4 + 3]-, and [4 + 2]-cycloadditions of donor–acceptor cyclobutenes, cyclopropenes, and siloxyalkynes with benzopyrylium ions are reported. [4 + 2]-cyclization/deMayo-type ring-extension cascade processes produce highly functionalized benzocyclooctatrienes, benzocycloheptatrienes, and 2-naphthols in good to excellent yields and selectivities. Moreover, the optical purity of reactant donor–acceptor cyclobutenes is fully retained during the cascade. The 1,3-dicarbonyl product framework of the reaction products provides opportunities for salen-type ligand syntheses and the construction of fused pyrazoles and isoxazoles that reveal a novel rotamer-diastereoisomerism. 
    more » « less
  5. Abstract Organic mixed ionic‐electronic conductors (OMIECs) have garnered significant attention due to their capacity to transport both ions and electrons, making them ideal for applications in energy storage, neuromorphics, and bioelectronics. However, charge compensation mechanisms during the polymer redox process remain poorly understood, and are often oversimplified as single‐ion injection with little attention to counterion effects. To advance understanding and design strategies toward next‐generation OMIEC systems, a series of p‐channel carboxylated mixed conductors is investigated. Varying side‐chain functionality, distinctive swelling character is uncovered during electrochemical doping/dedoping with model chao‐/kosmotropic electrolytes. Carboxylic acid functionalized polymers demonstrate strong deswelling and mass reduction during doping, indicating cation expulsion, while ethoxycarbonyl counterparts exhibit prominent mass increase, pointing to an anion‐driven doping mechanism. By employingoperandograzing incidence X‐ray fluorescence (GIXRF), it is revealed that the carboxyl functionalized polymer engages in robust cation interaction, whereas ester functionalization shifts the mechanism towards no cation involvement. It is demonstrated that cations are pivotal in mitigating swelling by counterbalancing anions, enabling efficient anion uptake without compromising performance. These findings underscore the transformative influence of functionality‐driven factors and side‐chain chemistry in governing ion dynamics and conduction, providing new frameworks for designing OMIECs with enhanced performance and reduced swelling. 
    more » « less