skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Integrating climate model projections into environmental risk assessment: A probabilistic modeling approach
Abstract The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367–383. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).  more » « less
Award ID(s):
2109293 2333795 2307944 2017785
PAR ID:
10485969
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrated Environmental Assessment and Management
Volume:
20
Issue:
2
ISSN:
1551-3777
Format(s):
Medium: X Size: p. 367-383
Size(s):
p. 367-383
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An understanding of the combined effects of climate change (CC) and other anthropogenic stressors, such as chemical exposures, is essential for improving ecological risk assessments of vulnerable ecosystems. In the Great Barrier Reef, coral reefs are under increasingly severe duress from increasing ocean temperatures, acidification, and cyclone intensities associated with CC. In addition to these stressors, inshore reef systems, such as the Mackay–Whitsunday coastal zone, are being impacted by other anthropogenic stressors, including chemical, nutrient, and sediment exposures related to more intense rainfall events that increase the catchment runoff of contaminated waters. To illustrate an approach for incorporating CC into ecological risk assessment frameworks, we developed an adverse outcome pathway network to conceptually delineate the effects of climate variables and photosystem II herbicide (diuron) exposures on scleractinian corals. This informed the development of a Bayesian network (BN) to quantitatively compare the effects of historical (1975–2005) and future projected climate on inshore hard coral bleaching, mortality, and cover. This BN demonstrated how risk may be predicted for multiple physical and biological stressors, including temperature, ocean acidification, cyclones, sediments, macroalgae competition, and crown of thorns starfish predation, as well as chemical stressors such as nitrogen and herbicides. Climate scenarios included an ensemble of 16 downscaled models encompassing current and future conditions based on multiple emission scenarios for two 30‐year periods. It was found that both climate‐related and catchment‐related stressors pose a risk to these inshore reef systems, with projected increases in coral bleaching and coral mortality under all future climate scenarios. This modeling exercise can support the identification of risk drivers for the prioritization of management interventions to build future resilient reefs.Integr Environ Assess Manag2024;20:401–418. © 2023 Norwegian Institute for Water Research and The Authors.Integrated Environmental Assessment and Managementpublished by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 
    more » « less
  2. ABSTRACT In 2012, a regional risk assessment was published that applied Bayesian networks (BN) to the structure of the relative risk model. The original structure of the relative risk model (RRM) was published in the late 1990s and developed during the next decade. The RRM coupled with a Monte Carlo analysis was applied to calculating risk to a number of sites and a variety of questions. The sites included watersheds, terrestrial systems, and marine environments and included stressors such as nonindigenous species, effluents, pesticides, nutrients, and management options. However, it became apparent that there were limits to the original approach. In 2009, the relative risk model was transitioned into the structure of a BN. Bayesian networks had several clear advantages. First, BNs innately incorporated categories and, as in the case of the relative risk model, ranks to describe systems. Second, interactions between multiple stressors can be combined using several pathways and the conditional probability tables (CPT) to calculate outcomes. Entropy analysis was the method used to document model sensitivity. As with the RRM, the method has now been applied to a wide series of sites and questions, from forestry management, to invasive species, to disease, the interaction of ecological and human health endpoints, the flows of large rivers, and now the efficacy and risks of synthetic biology. The application of both methods have pointed to the incompleteness of the fields of environmental chemistry, toxicology, and risk assessment. The low frequency of exposure‐response experiments and proper analysis have limited the available outputs for building appropriate CPTs. Interactions between multiple chemicals, landscape characteristics, population dynamics and community structure have been poorly characterized even for critical environments. A better strategy might have been to first look at the requirements of modern risk assessment approaches and then set research priorities.Integr Environ Assess Manag2021;17:79–94. © 2020 SETAC 
    more » « less
  3. Abstract As the levels of plastic use in global society have increased, it has become crucial to regulate plastics of all sizes including both microplastics (MPs) and nanoplastics (NPs). Here, the published literature on the current laws passed by the US Congress and regulations developed by various federal agencies such as the US Environmental Protection Agency and the US Food and Drug Administration (FDA) that could be used to regulate MPs and NPs have been reviewed and analyzed. Statutes such as the Clean Water Act, the Safe Drinking Water Act, the Toxic Substances Control Act (TSCA), the Resource Conservation and Recovery Act, and the Clean Air Act can all be used to address plastic pollution. These statutes have not been invoked for MP and NP waste in water or air. The Federal Food, Drug, and Cosmetic Act provides guidance on how the FDA should evaluate plastics use in food, food packaging, cosmetics, drug packaging, and medical devices. The FDA has recommended that acceptable levels of ingestible contaminant from recycled plastic are less than 1.5 µg/person/day, which is 476 000 times less than the possible ingested daily dose. Plastic regulation is present at the state level. States have banned plastic bags, and several cities have banned plastic straws. California is the only state beginning to focus on monitoring MPs in drinking water. The future of MP regulation in the USA should use TSCA to test the safety of plastics. The other statutes need to include MPs in their definitions. For the FDA, MPs should be redefined as contaminants—allowing tolerances to be set for MPs in food and beverages. Through minor changes in how MPs are classified, it is possible to begin to use the current statutes to understand and begin to minimize the possible effects of MPs on human health and the environment. Integr Environ Assess Manag 2023;19:474–488. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). 
    more » « less
  4. null (Ed.)
    Increasing numbers of chemicals are on the market and present in consumer products. Emerging evidence on the relationship between environmental contributions and prevalent diseases suggests associations between early-life exposure to manufactured chemicals and a wide range of children’s health outcomes. Using current assessment methodologies, public health and chemical management decisionmakers face challenges in evaluating and anticipating the potential impacts of exposure to chemicals on children’s health in the broader context of their physical (built and natural) and social environments. Here, we consider a systems approach to address the complexity of children’s environmental health and the role of exposure to chemicals during early life, in the context of nonchemical stressors, on health outcomes. By advancing the tools for integrating this more complex information, the scope of considerations that support chemical management decisions can be extended to include holistic impacts on children’s health. 
    more » « less
  5. Abstract The climate model hierarchy encompasses models of varying complexity along different axes, ranging from idealized models that elegantly describe isolated mechanisms to fully coupled Earth system models that aspire to provide useable climate projections. Based on the second Model Hierarchies Workshop, which took place in 2022, we present perspectives on how this field has evolved since the first Model Hierarchies Workshop in 2016. In this period, we have witnessed a dramatic increase in the use of (a) machine learning in climate modeling and (b) climate models to estimate risks and influence decision making under climate change. Here, we discuss the implications of these growing areas of research and how we expect them to become integrated into the model hierarchies framework. 
    more » « less