skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2333795

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract An understanding of the combined effects of climate change (CC) and other anthropogenic stressors, such as chemical exposures, is essential for improving ecological risk assessments of vulnerable ecosystems. In the Great Barrier Reef, coral reefs are under increasingly severe duress from increasing ocean temperatures, acidification, and cyclone intensities associated with CC. In addition to these stressors, inshore reef systems, such as the Mackay–Whitsunday coastal zone, are being impacted by other anthropogenic stressors, including chemical, nutrient, and sediment exposures related to more intense rainfall events that increase the catchment runoff of contaminated waters. To illustrate an approach for incorporating CC into ecological risk assessment frameworks, we developed an adverse outcome pathway network to conceptually delineate the effects of climate variables and photosystem II herbicide (diuron) exposures on scleractinian corals. This informed the development of a Bayesian network (BN) to quantitatively compare the effects of historical (1975–2005) and future projected climate on inshore hard coral bleaching, mortality, and cover. This BN demonstrated how risk may be predicted for multiple physical and biological stressors, including temperature, ocean acidification, cyclones, sediments, macroalgae competition, and crown of thorns starfish predation, as well as chemical stressors such as nitrogen and herbicides. Climate scenarios included an ensemble of 16 downscaled models encompassing current and future conditions based on multiple emission scenarios for two 30‐year periods. It was found that both climate‐related and catchment‐related stressors pose a risk to these inshore reef systems, with projected increases in coral bleaching and coral mortality under all future climate scenarios. This modeling exercise can support the identification of risk drivers for the prioritization of management interventions to build future resilient reefs.Integr Environ Assess Manag2024;20:401–418. © 2023 Norwegian Institute for Water Research and The Authors.Integrated Environmental Assessment and Managementpublished by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 
    more » « less
  2. Abstract There is a rich literature highlighting that pathogens are generally better adapted to infect local than novel hosts, and a separate seemingly contradictory literature indicating that novel pathogens pose the greatest threat to biodiversity and public health. Here, usingBatrachochytrium dendrobatidis, the fungus associated with worldwide amphibian declines, we test the hypothesis that there is enough variance in “novel” (quantified by geographic and phylogenetic distance) host‐pathogen outcomes to pose substantial risk of pathogen introductions despite local adaptation being common. Our continental‐scale common garden experiment and global‐scale meta‐analysis demonstrate that local amphibian‐fungal interactions result in higher pathogen prevalence, pathogen growth, and host mortality, but novel interactions led to variable consequences with especially virulent host‐pathogen combinations still occurring. Thus, while most pathogen introductions are benign, enough variance exists in novel host‐pathogen outcomes that moving organisms around the planet greatly increases the chance of pathogen introductions causing profound harm. 
    more » « less
  3. Abstract The Society of Environmental Toxicology and Chemistry (SETAC) convened a Pellston workshop in 2022 to examine how information on climate change could be better incorporated into the ecological risk assessment (ERA) process for chemicals as well as other environmental stressors. A major impetus for this workshop is that climate change can affect components of ecological risks in multiple direct and indirect ways, including the use patterns and environmental exposure pathways of chemical stressors such as pesticides, the toxicity of chemicals in receiving environments, and the vulnerability of species of concern related to habitat quality and use. This article explores a modeling approach for integrating climate model projections into the assessment of near- and long-term ecological risks, developed in collaboration with climate scientists. State-of-the-art global climate modeling and downscaling techniques may enable climate projections at scales appropriate for the study area. It is, however, also important to realize the limitations of individual global climate models and make use of climate model ensembles represented by statistical properties. Here, we present a probabilistic modeling approach aiming to combine projected climatic variables as well as the associated uncertainties from climate model ensembles in conjunction with ERA pathways. We draw upon three examples of ERA that utilized Bayesian networks for this purpose and that also represent methodological advancements for better prediction of future risks to ecosystems. We envision that the modeling approach developed from this international collaboration will contribute to better assessment and management of risks from chemical stressors in a changing climate. Integr Environ Assess Manag 2024;20:367–383. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC). 
    more » « less
  4. Free, publicly-accessible full text available September 24, 2026
  5. In Africa, many kids get sick from tiny worms called Schistosoma. These worms can slow children’s growth and development; damage the liver, intestines, and bladder; and sometimes lead to cancer or even death. Schistosoma can keep communities poor by reducing people’s ability to work. Over 800 million people are at risk of infection. People get infected when they play or wash in water filled with certain plants and snails. These plants grow fast because fertilizer from farmers’ fields washes into the water when it rains. We found that removing these plants can reduce Schistosoma. Plants that are removed can be turned into food for animals, compost for farms, or gas for cooking and electricity. This solution helps protect kids from getting sick and can even help to slow climate change. By working together, communities can clean their waterbodies and create a healthier, happier future, which is a win-win for people and nature. 
    more » « less
    Free, publicly-accessible full text available June 16, 2026
  6. Broadhurst, Mara Jana (Ed.)
    Schistosomiasis is a devastating parasitic disease in which the infectious stage to humans is released by intermediate host snails. The Senegal River Basin (SRB) is a high-risk area for both urogenital and fecal human schistosomiasis and has extensive rice cultivation. However, occupational risk of schistosomiasis to people working in irrigated rice fields is not well established. We performed intermediate host snail surveys from 2022-2023 in rice fields and irrigation canals throughout the SRB. We discovered human schistosome-shedding snails in rice fields and adjacent irrigation canals during the rice growing and non-growing seasons, establishing a clear occupational exposure risk to rice farmers. Relative to the non-growing season, this risk was higher in the rice growing and harvest season when more people are in the rice fields. Rice-fish co-culturing might reduce this occupational risk to rice farmers if local fish species consume enough snail intermediate hosts to reduceSchistosomatransmission. Our predation trials revealed that localHeterotis niloticusandHemichromisspp. fish consumed significant numbers ofBiomphalaria pfeifferiandBulinusspp. snails, and separate trials revealed that these same snail species exhibited only moderate avoidance and refuge use responses to fish chemical cues. These results indicate that there is exposure toSchistosomaparasites in rice fields in the SRB and introducing local fish to rice fields has promise for reducing this exposure as well as providing a protein source to rice farming families. We encourage future studies to more fully explore the benefits of rice-fish co-culturing in the West Africa. 
    more » « less
    Free, publicly-accessible full text available June 11, 2026
  7. Free, publicly-accessible full text available March 10, 2026
  8. Climate change is a well‐documented driver and threat multiplier of infectious disease in wildlife populations. However, wildlife disease management and climate‐change adaptation have largely operated in isolation. To improve conservation outcomes, we consider the role of climate adaptation in initiating or exacerbating the transmission and spread of wildlife disease and the deleterious effects thereof, as illustrated through several case studies. We offer insights into best practices for disease‐smart adaptation, including a checklist of key factors for assessing disease risks early in the climate adaptation process. By assessing risk, incorporating uncertainty, planning for change, and monitoring outcomes, natural resource managers and conservation practitioners can better prepare for and respond to wildlife disease threats in a changing climate. 
    more » « less
  9. Prayer animal release (PAR)—a traditional “compassion‐based” religious practice of releasing captive animals into the wild to improve the karma of the releaser—has been regarded as a major anthropogenic pathway facilitating species invasions worldwide. However, comprehensive, quantitative assessments of PAR‐related invasion risks, crucial for the development of mitigation strategies, are lacking. To address this knowledge gap, we conducted a literature review of the prevalence of PAR events and examined the overlap between PAR intensity across China and habitat suitability for non‐native vertebrates released in these events. Our results revealed that 63% of the areas with high PAR intensity in China were also suitable for non‐native vertebrate establishment, a degree of overlap that was greater than expected by chance. In addition, field surveys in China detected higher richness of non‐native fishes at PAR sites than at non‐PAR sites. These findings imply an overall high risk of biological invasions associated with PARs. We recommend interdisciplinary cooperation among scientists, religious groups, and government agencies to effectively manage PARs and reduce the associated bioinvasion risk. 
    more » « less