3D CT point clouds reconstructed from the original CT images are naturally represented in real-world coordinates. Compared with CT images, 3D CT point clouds contain invariant geometric features with irregular spatial distributions from multiple viewpoints. This paper rethinks pulmonary nodule detection in CT point cloud representations. We first extract the multi-view features from a sparse convolutional (SparseConv) encoder by rotating the point clouds with different angles in the world coordinate. Then, to simultaneously learn the discriminative and robust spatial features from various viewpoints, a nodule proposal optimization schema is proposed to obtain coarse nodule regions by aggregating consistent nodule proposals prediction from multi-view features. Last, the multi-level features and semantic segmentation features extracted from a SparseConv decoder are concatenated with multi-view features for final nodule region regression. Experiments on the benchmark dataset (LUNA16) demonstrate the feasibility of applying CT point clouds in lung nodule detection task. Furthermore, we observe that by combining multi-view predictions, the performance of the proposed framework is greatly improved compared to single-view, while the interior texture features of nodules from images are more suitable for detecting nodules in small sizes. 
                        more » 
                        « less   
                    
                            
                            Robust explanation supervision for false positive reduction in pulmonary nodule detection
                        
                    
    
            Abstract BackgroundLung cancer is the deadliest and second most common cancer in the United States due to the lack of symptoms for early diagnosis. Pulmonary nodules are small abnormal regions that can be potentially correlated to the occurrence of lung cancer. Early detection of these nodules is critical because it can significantly improve the patient's survival rates. Thoracic thin‐sliced computed tomography (CT) scanning has emerged as a widely used method for diagnosing and prognosis lung abnormalities. PurposeThe standard clinical workflow of detecting pulmonary nodules relies on radiologists to analyze CT images to assess the risk factors of cancerous nodules. However, this approach can be error‐prone due to the various nodule formation causes, such as pollutants and infections. Deep learning (DL) algorithms have recently demonstrated remarkable success in medical image classification and segmentation. As an ever more important assistant to radiologists in nodule detection, it is imperative ensure the DL algorithm and radiologist to better understand the decisions from each other. This study aims to develop a framework integrating explainable AI methods to achieve accurate pulmonary nodule detection. MethodsA robust and explainable detection (RXD) framework is proposed, focusing on reducing false positives in pulmonary nodule detection. Its implementation is based on an explanation supervision method, which uses nodule contours of radiologists as supervision signals to force the model to learn nodule morphologies, enabling improved learning ability on small dataset, and enable small dataset learning ability. In addition, two imputation methods are applied to the nodule region annotations to reduce the noise within human annotations and allow the model to have robust attributions that meet human expectations. The 480, 265, and 265 CT image sets from the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC‐IDRI) dataset are used for training, validation, and testing. ResultsUsing only 10, 30, 50, and 100 training samples sequentially, our method constantly improves the classification performance and explanation quality of baseline in terms of Area Under the Curve (AUC) and Intersection over Union (IoU). In particular, our framework with a learnable imputation kernel improves IoU from baseline by 24.0% to 80.0%. A pre‐defined Gaussian imputation kernel achieves an even greater improvement, from 38.4% to 118.8% from baseline. Compared to the baseline trained on 100 samples, our method shows less drop in AUC when trained on fewer samples. A comprehensive comparison of interpretability shows that our method aligns better with expert opinions. ConclusionsA pulmonary nodule detection framework was demonstrated using public thoracic CT image datasets. The framework integrates the robust explanation supervision (RES) technique to ensure the performance of nodule classification and morphology. The method can reduce the workload of radiologists and enable them to focus on the diagnosis and prognosis of the potential cancerous pulmonary nodules at the early stage to improve the outcomes for lung cancer patients. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10485979
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Medical Physics
- ISSN:
- 0094-2405
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ImportanceScreening with low-dose computed tomography (CT) has been shown to reduce mortality from lung cancer in randomized clinical trials in which the rate of adherence to follow-up recommendations was over 90%; however, adherence to Lung Computed Tomography Screening Reporting & Data System (Lung-RADS) recommendations has been low in practice. Identifying patients who are at risk of being nonadherent to screening recommendations may enable personalized outreach to improve overall screening adherence. ObjectiveTo identify factors associated with patient nonadherence to Lung-RADS recommendations across multiple screening time points. Design, Setting, and ParticipantsThis cohort study was conducted at a single US academic medical center across 10 geographically distributed sites where lung cancer screening is offered. The study enrolled individuals who underwent low-dose CT screening for lung cancer between July 31, 2013, and November 30, 2021. ExposuresLow-dose CT screening for lung cancer. Main Outcomes and MeasuresThe main outcome was nonadherence to follow-up recommendations for lung cancer screening, defined as failing to complete a recommended or more invasive follow-up examination (ie, diagnostic dose CT, positron emission tomography–CT, or tissue sampling vs low-dose CT) within 15 months (Lung-RADS score, 1 or 2), 9 months (Lung-RADS score, 3), 5 months (Lung-RADS score, 4A), or 3 months (Lung-RADS score, 4B/X). Multivariable logistic regression was used to identify factors associated with patient nonadherence to baseline Lung-RADS recommendations. A generalized estimating equations model was used to assess whether the pattern of longitudinal Lung-RADS scores was associated with patient nonadherence over time. ResultsAmong 1979 included patients, 1111 (56.1%) were aged 65 years or older at baseline screening (mean [SD] age, 65.3 [6.6] years), and 1176 (59.4%) were male. The odds of being nonadherent were lower among patients with a baseline Lung-RADS score of 1 or 2 vs 3 (adjusted odds ratio [AOR], 0.35; 95% CI, 0.25-0.50), 4A (AOR, 0.21; 95% CI, 0.13-0.33), or 4B/X, (AOR, 0.10; 95% CI, 0.05-0.19); with a postgraduate vs college degree (AOR, 0.70; 95% CI, 0.53-0.92); with a family history of lung cancer vs no family history (AOR, 0.74; 95% CI, 0.59-0.93); with a high age-adjusted Charlson Comorbidity Index score (≥4) vs a low score (0 or 1) (AOR, 0.67; 95% CI, 0.46-0.98); in the high vs low income category (AOR, 0.79; 95% CI, 0.65-0.98); and referred by physicians from pulmonary or thoracic-related departments vs another department (AOR, 0.56; 95% CI, 0.44-0.73). Among 830 eligible patients who had completed at least 2 screening examinations, the adjusted odds of being nonadherent to Lung-RADS recommendations at the following screening were increased in patients with consecutive Lung-RADS scores of 1 to 2 (AOR, 1.38; 95% CI, 1.12-1.69). Conclusions and RelevanceIn this retrospective cohort study, patients with consecutive negative lung cancer screening results were more likely to be nonadherent with follow-up recommendations. These individuals are potential candidates for tailored outreach to improve adherence to recommended annual lung cancer screening.more » « less
- 
            Summary Recent work suggests that some aspects of lung nodule detection ability may relate to object recognition ability. However, this work only sampled radiological novices. Here, we further investigate whether object recognition ability predicts lung nodule detection ability (as measured by the Vanderbilt Chest Radiograph Test or VCRT), after controlling for experience and fluid intelligence, in a sample of radiologists and nonradiologists. We find that radiological experience accounts for approximately 50% of VCRT variance. After controlling for experience, fluid intelligence and object recognition ability account for an additional 15% of VCRT variance. These results suggest that while training is key in learning to detect nodules, given the same experience level, those with higher fluid intelligence and object recognition ability perform better. The recently proposed construct of visual object recognition ability may add unique information relative to general cognitive skills in assessing aptitude for a career in radiology.more » « less
- 
            Interstitial lung disease (ILD) causes pulmonary fibrosis. The correct classification of ILD plays a crucial role in the diagnosis and treatment process. In this research work, we propose a lung nodules recognition method based on a deep convolutional neural network (DCNN) and global features, which can be used for computer-aided diagnosis (CAD) of global features of lung nodules. Firstly, a DCNN is constructed based on the characteristics and complexity of lung computerized tomography (CT) images. Then we discussed the effects of different iterations on the recognition results and influence of different model structures on the global features of lung nodules. We also incorporated the improvement of convolution kernel size, feature dimension, and network depth. Thirdly, the effects of different pooling methods, activation functions and training algorithms we proposed has been analyzed to demonstrate the advantages of the new strategy. Finally, the experimental results verify the feasibility of the proposed DCNN for CAD of global features of lung nodules, and the evaluation shown that our proposed method could achieve an outstanding results compare to state-of-arts.more » « less
- 
            We introduce an active, semisupervised algorithm that utilizes Bayesian experimental design to address the shortage of annotated images required to train and validate Artificial Intelligence (AI) models for lung cancer screening with computed tomography (CT) scans. Our approach incorporates active learning with semisupervised expectation maximization to emulate the human in the loop for additional ground truth labels to train, evaluate, and update the neural network models. Bayesian experimental design is used to intelligently identify which unlabeled samples need ground truth labels to enhance the model’s performance. We evaluate the proposed Active Semi-supervised Expectation Maximization for Computer aided diagnosis (CAD) tasks (ASEM-CAD) using three public CT scans datasets: the National Lung Screening Trial (NLST), the Lung Image Database Consortium (LIDC), and Kaggle Data Science Bowl 2017 for lung cancer classification using CT scans. ASEM-CAD can accurately classify suspicious lung nodules and lung cancer cases with an area under the curve (AUC) of 0.94 (Kaggle), 0.95 (NLST), and 0.88 (LIDC) with significantly fewer labeled images compared to a fully supervised model. This study addresses one of the significant challenges in early lung cancer screenings using low-dose computed tomography (LDCT) scans and is a valuable contribution towards the development and validation of deep learning algorithms for lung cancer screening and other diagnostic radiology examinations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
