skip to main content


This content will become publicly available on January 10, 2025

Title: A Protein‐Adsorbent Hydrogel with Tunable Stiffness for Tissue Culture Demonstrates Matrix‐Dependent Stiffness Responses
Abstract

Although tissue culture plastic has been widely employed for cell culture, the rigidity of plastic is not physiologic. Softer hydrogels used to culture cells have not been widely adopted in part because coupling chemistries are required to covalently capture extracellular matrix (ECM) proteins and support cell adhesion. To create an in vitro system with tunable stiffnesses that readily adsorbs ECM proteins for cell culture, a novel hydrophobic hydrogel system is presented via chemically converting hydroxyl residues on the dextran backbone to methacrylate groups, thereby transforming non‐protein adhesive, hydrophilic dextran to highly protein adsorbent substrates. Increasing methacrylate functionality increases the hydrophobicity in the resulting hydrogels and enhances ECM protein adsorption without additional chemical reactions. These hydrophobic hydrogels permit facile and tunable modulation of substrate stiffness independent of hydrophobicity or ECM coatings. Using this approach, it is shown that substrate stiffness and ECM adsorption work together to affect cell morphology and proliferation, but the strengths of these effects vary in different cell types. Furthermore, it is revealed that stiffness‐mediated differentiation of dermal fibroblasts into myofibroblasts is modulated by the substrate ECM. The material system demonstrates remarkable simplicity and flexibility to tune ECM coatings and substrate stiffness and study their effects on cell function.

 
more » « less
Award ID(s):
1757371
NSF-PAR ID:
10486248
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Thermoresponsive polysaccharide-based materials with tunable transition temperatures regulating phase-separated microdomains offer substantial opportunities in tissue engineering and biomedical applications. To develop novel synthetic thermoresponsive polysaccharides, we employed versatile chemical routes to attach hydrophobic adducts to the backbone of hydrophilic dextran and gradually increased the hydrophobicity of the dextran chains to engineer phase separation. Conjugating methacrylate moieties to the dextran backbone yielded a continuous increase in macromolecular hydrophobicity that induced a reversible phase transition whose lower critical solution temperature can be modulated via variations in polysaccharide concentration, molecular weight, degree of methacrylation, ionic strength, surfactant, urea and Hofmeister salts. The phase separation is driven by increased hydrophobic interactions of methacrylate residues, where the addition of surfactant and urea disassociates hydrophobic interactions and eliminates phase transition. Morphological characterization of phase-separated dextran solutions via scanning electron and flow imaging microscopy revealed the formation of microdomains upon phase transition. These novel thermoresponsive dextrans exhibited promising cytocompatibility in cell culture where the phase transition exerted negligible effects on the attachment, spreading and proliferation of human dermal fibroblasts. Leveraging the conjugated methacrylate groups, we employed photo-initiated radical polymerization to generate phase-separated hydrogels with distinct microdomains. Our bottom-up approach to engineering macromolecular hydrophobicity of conventional hydrophilic, non-phase separating dextrans to induce robust phase transition and generate thermoresponsive phase-separated biomaterials will find applications in mechanobiology, tissue repair and regenerative medicine. 
    more » « less
  2. Abstract

    Mechanical cues from the extracellular matrix (ECM) regulate vascular endothelial cell (EC) morphology and function. Since naturally derived ECMs are viscoelastic, cells respond to viscoelastic matrices that exhibit stress relaxation, in which a cell‐applied force results in matrix remodeling. To decouple the effects of stress relaxation rate from substrate stiffness on EC behavior, we engineered elastin‐like protein (ELP) hydrogels in which dynamic covalent chemistry (DCC) was used to crosslink hydrazine‐modified ELP (ELP‐HYD) and aldehyde/benzaldehyde‐modified polyethylene glycol (PEG‐ALD/PEG‐BZA). The reversible DCC crosslinks in ELP‐PEG hydrogels create a matrix with independently tunable stiffness and stress relaxation rate. By formulating fast‐relaxing or slow‐relaxing hydrogels with a range of stiffness (500–3300 Pa), we examined the effect of these mechanical properties on EC spreading, proliferation, vascular sprouting, and vascularization. The results show that both stress relaxation rate and stiffness modulate endothelial spreading on two‐dimensional substrates, on which ECs exhibited greater cell spreading on fast‐relaxing hydrogels up through 3 days, compared with slow‐relaxing hydrogels at the same stiffness. In three‐dimensional hydrogels encapsulating ECs and fibroblasts in coculture, the fast‐relaxing, low‐stiffness hydrogels produced the widest vascular sprouts, a measure of vessel maturity. This finding was validated in a murine subcutaneous implantation model, in which the fast‐relaxing, low‐stiffness hydrogel produced significantly more vascularization compared with the slow‐relaxing, low‐stiffness hydrogel. Together, these results suggest that both stress relaxation rate and stiffness modulate endothelial behavior, and that the fast‐relaxing, low‐stiffness hydrogels supported the highest capillary density in vivo.

     
    more » « less
  3. Since its invention in the late 1980s, the air-liquid-interface (ALI) culture system has been the standard in vitro model for studying human airway biology and pulmonary diseases. However, in a conventional ALI system, cells are cultured on a porous plastic membrane that is much stiffer than human airway tissues. Here, we develop a gel-ALI culture system by simply coating the plastic membrane with a thin layer of hydrogel with tunable stiffness matching that of healthy and fibrotic airway tissues. We determine the optimum gel thickness that does not impair the transport of nutrients and biomolecules essential to cell growth. We show that the gel-ALI system allows human bronchial epithelial cells (HBECs) to proliferate and differentiate into a pseudostratified epithelium. Further, we discover that HBECs migrate significantly faster on hydrogel substrates with stiffness matching that of fibrotic lung tissues, highlighting the importance of mechanical cues in human airway remodeling. The developed gel-ALI system provides a facile approach to studying the effects of mechanical cues in human airway biology and in modeling pulmonary diseases.

     
    more » « less
  4. Hydrophobic surfaces provide special characteristics for biomedical applications ranging from tunable protein adsorption, cellular interactions, and hemocompatibility to antibacterial coatings. In this research, we biomimic the hair-like micro-whisker structures of magnolia leaf using a synthetic polymeric formulation. Optical and scanning electron microscopy images revealed the presence of micro-whiskers resulting in higher water contact angles. The top layer of the magnolia leaf had a contact angle of 50º as compared to the hydrophobic bottom layer at 98º. A synthetic polymeric formulation was coated on different materials to study its effect on hydrophobicity. The coating was replicated (n=3) on each of the materials used such as glass, polymer, fabric, wood, and stainless steel. A surface tensiometer was used to measure the transition from hydrophilic to hydrophobic interactions between water and the substrate materials. Contact angle measurements revealed an increase in hydrophobicity for all the materials from their original uncoated surface. Glass displayed the highest increase in contact angle from 37º to 90º. Phase analysis of the coated region was performed to characterize the surface exposure of glass substrate to the synthetic polymeric formulation. An increase in the coated region showed a significant increase in contact angle from 50º to 95º. This research lays the foundation to develop and understand hydrophobic coatings for several biomedical applications including non-fouling implant surfaces, lab-on-chip devices, and other diagnostic tools. 
    more » « less
  5. Abstract

    There is a tremendous interest in developing hydrogels as tunable in vitro cell culture platforms to study cell response to mechanical cues in a controlled manner. However, little is known about how common cell culture techniques, such as serial expansion on tissue culture plastic, affect subsequent cell behavior when cultured on hydrogels. In this work, a methacrylated hyaluronic acid hydrogel platform is leveraged to study stromal cell mechanotransduction. Hydrogels are first formed through thiol‐Michael addition to model normal soft tissue (e.g., lung) stiffness (E ≈ 1 kPa). Secondary cross‐linking via radical photopolymerization of unconsumed methacrylates allows matching of early‐ (E ≈ 6 kPa) and late‐stage fibrotic tissue (E ≈ 50 kPa). Early passage (P1) human bone marrow mesenchymal stromal cells (hMSCs) display increased spreading, myocardin‐related transcription factor‐A (MRTF‐A) nuclear localization, and focal adhesion size with increasing hydrogel stiffness. However, late passage (P5) hMSCs show reduced sensitivity to substrate mechanics with lower MRTF‐A nuclear translocation and smaller focal adhesions on stiffer hydrogels compared to early passage hMSCs. Similar trends are observed in an immortalized human lung fibroblast line. Overall, this work highlights the implications of standard cell culture practices on investigating cell response to mechanical signals using in vitro hydrogel models.

     
    more » « less