Abstract The analysis of time series data with detection limits is challenging due to the high‐dimensional integral involved in the likelihood. Existing methods are either computationally demanding or rely on restrictive parametric distributional assumptions. We propose a semiparametric approach, where the temporal dependence is captured by parametric copula, while the marginal distribution is estimated non‐parametrically. Utilizing the properties of copulas, we develop a new copula‐based sequential sampling algorithm, which provides a convenient way to calculate the censored likelihood. Even without full parametric distributional assumptions, the proposed method still allows us to efficiently compute the conditional quantiles of the censored response at a future time point, and thus construct both point and interval predictions. We establish the asymptotic properties of the proposed pseudo maximum likelihood estimator, and demonstrate through simulation and the analysis of a water quality data that the proposed method is more flexible and leads to more accurate predictions than Gaussian‐based methods for non‐normal data.The Canadian Journal of Statistics47: 438–454; 2019 © 2019 Statistical Society of Canada
more »
« less
Copula-Based Semiparametric Models for Spatiotemporal Data
Abstract The joint analysis of spatial and temporal processes poses computational challenges due to the data's high dimensionality. Furthermore, such data are commonly non-Gaussian. In this paper, we introduce a copula-based spatiotemporal model for analyzing spatiotemporal data and propose a semiparametric estimator. The proposed algorithm is computationally simple, since it models the marginal distribution and the spatiotemporal dependence separately. Instead of assuming a parametric distribution, the proposed method models the marginal distributions nonparametrically and thus offers more flexibility. The method also provides a convenient way to construct both point and interval predictions at new times and locations, based on the estimated conditional quantiles. Through a simulation study and an analysis of wind speeds observed along the border between Oregon and Washington, we show that our method produces more accurate point and interval predictions for skewed data than those based on normality assumptions.
more »
« less
- Award ID(s):
- 1712760
- PAR ID:
- 10486253
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrics
- Volume:
- 75
- Issue:
- 4
- ISSN:
- 0006-341X
- Format(s):
- Medium: X Size: p. 1156-1167
- Size(s):
- p. 1156-1167
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. Local spatiotemporal nonstationarity occurs in various naturaland socioeconomic processes. Many studies have attempted to introduce timeas a new dimension into a geographically weighted regression (GWR) model,but the actual results are sometimes not satisfying or even worse than theoriginal GWR model. The core issue here is a mechanism for weighting the effectsof both temporal variation and spatial variation. In many geographical andtemporal weighted regression (GTWR) models, the concept of time distance hasbeen inappropriately treated as a time interval. Consequently, the combinedeffect of temporal and spatial variation is often inaccurate in theresulting spatiotemporal kernel function. This limitation restricts theconfiguration and performance of spatiotemporal weights in many existingGTWR models. To address this issue, we propose a new spatiotemporal weightedregression (STWR) model and the calibration method for it. A highlight ofSTWR is a new temporal kernel function, wherein the method for temporalweighting is based on the degree of impact from each observed point to aregression point. The degree of impact, in turn, is based on the rate ofvalue variation of the nearby observed point during the time interval. Theupdated spatiotemporal kernel function is based on a weighted combination ofthe temporal kernel with a commonly used spatial kernel (Gaussian orbi-square) by specifying a linear function of spatial bandwidth versus time.Three simulated datasets of spatiotemporal processes were used to test theperformance of GWR, GTWR, and STWR. Results show that STWR significantlyimproves the quality of fit and accuracy. Similar results were obtained byusing real-world data for precipitation hydrogen isotopes (δ2H) in the northeastern United States. The leave-one-out cross-validation(LOOCV) test demonstrates that, compared with GWR, the total predictionerror of STWR is reduced by using recent observed points. Predictionsurfaces of models in this case study show that STWR is more localized thanGWR. Our research validates the ability of STWR to take full advantage ofall the value variation of past observed points. We hope STWR can bringfresh ideas and new capabilities for analyzing and interpreting localspatiotemporal nonstationarity in many disciplines.more » « less
-
Abstract Copula is a popular method for modeling the dependence among marginal distributions in multivariate censored data. As many copula models are available, it is essential to check if the chosen copula model fits the data well for analysis. Existing approaches to testing the fitness of copula models are mainly for complete or right-censored data. No formal goodness-of-fit (GOF) test exists for interval-censored or recurrent events data. We develop a general GOF test for copula-based survival models using the information ratio (IR) to address this research gap. It can be applied to any copula family with a parametric form, such as the frequently used Archimedean, Gaussian, and D-vine families. The test statistic is easy to calculate, and the test procedure is straightforward to implement. We establish the asymptotic properties of the test statistic. The simulation results show that the proposed test controls the type-I error well and achieves adequate power when the dependence strength is moderate to high. Finally, we apply our method to test various copula models in analyzing multiple real datasets. Our method consistently separates different copula models for all these datasets in terms of model fitness.more » « less
-
Estimating an individual treatment effect (ITE) is essential to personalized decision making. However, existing methods for estimating the ITE often rely on unconfoundedness, an assumption that is fundamentally untestable with observed data. To assess the robustness of individual-level causal conclusion with unconfoundedness, this article proposes a method for sensitivity analysis of the ITE, a way to estimate a range of the ITE under unobserved confounding. The method we develop quantifies unmeasured confounding through a marginal sensitivity model, and adapts the framework of conformal inference to estimate an ITE interval at a given confounding strength. In particular, we formulate this sensitivity analysis as a conformal inference problem under distribution shift, and we extend existing methods of covariate-shifted conformal inference to this more general setting. The resulting predictive interval has guaranteed nominal coverage of the ITE and provides this coverage with distribution-free and nonasymptotic guarantees.We evaluate the method on synthetic data and illustrate its application in an observational study. Supplementary materials for this article are available online.more » « less
-
Estimating an individual treatment effect (ITE) is essential to personalized decision making. However, existing methods for estimating the ITE often rely on unconfoundedness, an assumption that is fundamentally untestable with observed data. To assess the robustness of individual-level causal conclusion with unconfoundedness, this article proposes a method for sensitivity analysis of the ITE, a way to estimate a range of the ITE under unobserved confounding. The method we develop quantifies unmeasured confounding through a marginal sensitivity model, and adapts the framework of conformal inference to estimate an ITE interval at a given confounding strength. In particular, we formulate this sensitivity analysis as a conformal inference problem under distribution shift, and we extend existing methods of covariate-shifted conformal inference to this more general setting. The resulting predictive interval has guaranteed nominal coverage of the ITE and provides this coverage with distribution-free and nonasymptotic guarantees.We evaluate the method on synthetic data and illustrate its application in an observational study. Supplementary materials for this article are available online.more » « less
An official website of the United States government
