skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectrum of random d ‐regular graphs up to the edge
Abstract Consider the normalized adjacency matrices of randomd‐regular graphs onNvertices with fixed degree . We prove that, with probability for any , the following two properties hold as provided that : (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten–McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound inN, that is, . (ii) All eigenvectors of randomd‐regular graphs are completely delocalized.  more » « less
Award ID(s):
2153335
PAR ID:
10486371
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Communications on Pure and Applied Mathematics
Volume:
77
Issue:
3
ISSN:
0010-3640
Format(s):
Medium: X Size: p. 1635-1723
Size(s):
p. 1635-1723
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A coupling of random walkers on the same finite graph, who take turns sequentially, is said to be anavoidance couplingif the walkers never collide. Previous studies of these processes have focused almost exclusively on complete graphs, in particular how many walkers an avoidance coupling can include. For other graphs, apart from special cases, it has been unsettled whether even two noncolliding simple random walkers can be coupled. In this article, we construct such a coupling on (i) anyd‐regular graph avoiding a fixed subgraph depending ond; and (ii) any square‐free graph with minimum degree at least three. A corollary of the first result is that a uniformly random regular graph onnvertices admits an avoidance coupling with high probability. 
    more » « less
  2. For a graph G on n vertices, naively sampling the position of a random walk of at time t requires work Ω(t). We desire local access algorithms supporting positionG(t) queries, which return the position of a random walk from some fixed start vertex s at time t, where the joint distribution of returned positions is 1/ poly(n) close to those of a uniformly random walk in ℓ1 distance. We first give an algorithm for local access to random walks on a given undirected d-regular graph with eO( 1 1−λ √ n) runtime per query, where λ is the second-largest eigenvalue of the random walk matrix of the graph in absolute value. Since random d-regular graphs G(n, d) are expanders with high probability, this gives an eO(√ n) algorithm for a graph drawn from G(n, d) whp, which improves on the naive method for small numbers of queries. We then prove that no algorithm with subconstant error given probe access to an input d-regular graph can have runtime better than Ω(√ n/ log(n)) per query in expectation when the input graph is drawn from G(n, d), obtaining a nearly matching lower bound. We further show an Ω(n1/4) runtime per query lower bound even with an oblivious adversary (i.e. when the query sequence is fixed in advance). We then show that for families of graphs with additional group theoretic structure, dramatically better results can be achieved. We give local access to walks on small-degree abelian Cayley graphs, including cycles and hypercubes, with runtime polylog(n) per query. This also allows for efficient local access to walks on polylog degree expanders. We show that our techniques apply to graphs with high degree by extending or results to graphs constructed using the tensor product (giving fast local access to walks on degree nϵ graphs for any ϵ ∈ (0, 1]) and Cartesian product. 
    more » « less
  3. Abstract We study the performance of Markov chains for theq-state ferromagnetic Potts model on random regular graphs. While the cases of the grid and the complete graph are by now well-understood, the case of random regular graphs has resisted a detailed analysis and, in fact, even analysing the properties of the Potts distribution has remained elusive. It is conjectured that the performance of Markov chains is dictated by metastability phenomena, i.e., the presence of “phases” (clusters) in the sample space where Markov chains with local update rules, such as the Glauber dynamics, are bound to take exponential time to escape, and therefore cause slow mixing. The phases that are believed to drive these metastability phenomena in the case of the Potts model emerge as local, rather than global, maxima of the so-called Bethe functional, and previous approaches of analysing these phases based on optimisation arguments fall short of the task. Our first contribution is to detail the emergence of the two relevant phases for theq-state Potts model on thed-regular random graph for all integers$$q,d\ge 3$$ q , d 3 , and establish that for an interval of temperatures, delineated by the uniqueness and a broadcasting threshold on thed-regular tree, the two phases coexist (as possible metastable states). The proofs are based on a conceptual connection between spatial properties and the structure of the Potts distribution on the random regular graph, rather than complicated moment calculations. This significantly refines earlier results by Helmuth, Jenssen, and Perkins who had established phase coexistence for a small interval around the so-called ordered-disordered threshold (via different arguments) that applied for largeqand$$d\ge 5$$ d 5 . Based on our new structural understanding of the model, our second contribution is to obtain metastability results for two classical Markov chains for the Potts model. We first complement recent fast mixing results for Glauber dynamics by Blanca and Gheissari below the uniqueness threshold, by showing an exponential lower bound on the mixing time above the uniqueness threshold. Then, we obtain tight results even for the non-local and more elaborate Swendsen–Wang chain, where we establish slow mixing/metastability for the whole interval of temperatures where the chain is conjectured to mix slowly on the random regular graph. The key is to bound the conductance of the chains using a random graph “planting” argument combined with delicate bounds on random-graph percolation. 
    more » « less
  4. Abstract We determine the order of thek-core in a large class of dense graph sequences. Let$$G_n$$be a sequence of undirected,n-vertex graphs with edge weights$$\{a^n_{i,j}\}_{i,j \in [n]}$$that converges to a graphon$$W\colon[0,1]^2 \to [0,+\infty)$$in the cut metric. Keeping an edge (i,j) of$$G_n$$with probability$${a^n_{i,j}}/{n}$$independently, we obtain a sequence of random graphs$$G_n({1}/{n})$$. Using a branching process and the theory of dense graph limits, under mild assumptions we obtain the order of thek-core of random graphs$$G_n({1}/{n})$$. Our result can also be used to obtain the threshold of appearance of ak-core of ordern. 
    more » « less
  5. Abstract In this paper, we consider a randomized greedy algorithm for independent sets inr‐uniformd‐regular hypergraphsGonnvertices with girthg. By analyzing the expected size of the independent sets generated by this algorithm, we show that, whereconverges to 0 asg → ∞for fixeddandr, andf(d, r) is determined by a differential equation. This extends earlier results of Garmarnik and Goldberg for graphs [8]. We also prove that when applying this algorithm to uniform linear hypergraphs with bounded degree, the size of the independent sets generated by this algorithm concentrate around the mean asymptotically almost surely. 
    more » « less