skip to main content


Search for: All records

Award ID contains: 1939743

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Group fairness definitions such as Demographic Parity and Equal Opportunity make assumptions about the underlying decision-problem that restrict them to classification problems. Prior work has translated these definitions to other machine learning environments, such as unsupervised learning and reinforcement learning, by implementing their closest mathematical equivalent. As a result, there are numerous bespoke interpretations of these definitions. This work aims to unify the shared aspects of each of these bespoke definitions, and to this end we provide a group fairness framework that generalizes beyond just classification problems. We leverage two fairness principles that enable this generalization. First, our framework measures outcomes in terms of utilities, rather than predictions, and does so for both the decision-maker and the individual. Second, our framework can consider counterfactual outcomes, rather than just observed outcomes, thus preventing loopholes where fairness criteria are satisfied through self-fulfilling prophecies. We provide concrete examples of how our utility fairness framework avoids these assumptions and thus naturally integrates with classification, clustering, and reinforcement learning fairness problems. We also show that many of the bespoke interpretations of Demographic Parity and Equal Opportunity fit nicely as special cases of our framework.

     
    more » « less
    Free, publicly-accessible full text available September 13, 2024
  2. Free, publicly-accessible full text available July 1, 2024
  3. The fairness of machine learning-based decisions has become an increasingly important focus in the design of supervised machine learning methods. Most fairness approaches optimize a specified trade-off between performance measure(s) (e.g., accuracy, log loss, or AUC) and fairness measure(s) (e.g., demographic parity, equalized odds). This begs the question: are the right performance-fairness trade-offs being specified? We instead recast fair machine learning as an imitation learning task by introducing superhuman fairness, which seeks to simultaneously outperform human decisions on multiple predictive performance and fairness measures. We demonstrate the benefits of this approach given suboptimal decisions. 
    more » « less
  4. Auditing for fairness often requires relying on a secondary source, e.g., Census data, to inform about protected attributes. To avoid making assumptions about an overarching model that ties such information to the primary data source, a recent line of work has suggested finding the entire range of possible fairness valuations consistent with both sources. Though attractive, the current form of this methodology relies on rigid analytical expressions and lacks the ability to handle continuous decisions, e.g., metrics of urban services. We show that, in such settings, directly adapting these expressions can lead to loose and even vacuous results, particularly on just how fair the audited decisions may be. If used, the audit would be perceived more optimistically than it ought to be. We propose a linear programming formulation to handle continuous decisions, by finding the empirical fairness range when statistical parity is measured through the Kolmogorov-Smirnov distance. The size of this problem is linear in the number of data points and efficiently solvable. We analyze this approach and give finite-sample guarantees to the resulting fairness valuation. We then apply it to synthetic data and to 311 Chicago City Services data, and demonstrate its ability to reveal small but detectable bounds on fairness. 
    more » « less
  5. While conventional ranking systems focus solely on maximizing the utility of the ranked items to users, fairness-aware ranking systems additionally try to balance the exposure based on different protected attributes such as gender or race. To achieve this type of group fairness for ranking, we derive a new ranking system from the first principles of distributional robustness. We formulate a minimax game between a player choosing a distribution over rankings to maximize utility while satisfying fairness constraints against an adversary seeking to minimize utility while matching statistics of the training data. Rather than maximizing utility and fairness for the specific training data, this approach efficiently produces robust utility and fairness for a much broader family of distributions of rankings that include the training data. We show that our approach provides better utility for highly fair rankings than existing baseline methods. 
    more » « less
    Free, publicly-accessible full text available May 27, 2024
  6. While conventional ranking systems focus solely on maximizing the utility of the ranked items to users, fairness-aware ranking systems additionally try to balance the exposure based on different protected attributes such as gender or race. To achieve this type of group fairness for ranking, we derive a new ranking system from the first principles of distributional robustness. We formulate a minimax game between a player choosing a distribution over rankings to maximize utility while satisfying fairness constraints against an adversary seeking to minimize utility while matching statistics of the training data. Rather than maximizing utility and fairness for the specific training data, this approach efficiently produces robust utility and fairness for a much broader family of distributions of rankings that include the training data. We show that our approach provides better utility for highly fair rankings than existing baseline methods. 
    more » « less
  7. Ensuring fairness in computational problems has emerged as a key topic during recent years, buoyed by considerations for equitable resource distributions and social justice. It is possible to incorporate fairness in computational problems from several perspectives, such as using optimization, game-theoretic or machine learning frameworks. In this paper we address the problem of incorporation of fairness from a combinatorial optimization perspective. We formulate a combinatorial optimization framework, suitable for analysis by researchers in approximation algorithms and related areas, that incorporates fairness in maximum coverage problems as an interplay between two conflicting objectives. Fairness is imposed in coverage by using coloring constraints that minimizes the discrepancies between number of elements of different colors covered by selected sets; this is in contrast to the usual discrepancy minimization problems studied extensively in the literature where (usually two) colors are not given a priori but need to be selected to minimize the maximum color discrepancy of each individual set. Our main results are a set of randomized and deterministic approximation algorithms that attempts to simultaneously approximate both fairness and coverage in this framework. 
    more » « less
  8. Prevalent imitation learning methods seek to produce behavior that matches or exceeds average human performance. This often prevents achieving expert-level or superhuman performance when identifying the better demonstrations to imitate is difficult. We instead assume demonstrations are of varying quality and seek to induce behavior that is unambiguously better (i.e., Pareto dominant or minimally subdominant) than all human demonstrations. Our minimum subdominance inverse optimal control training objective is primarily defined by high quality demonstrations; lower quality demonstrations, which are more easily dominated, are effectively ignored instead of degrading imitation. With increasing probability, our approach produces superhuman behavior incurring lower cost than demonstrations on the demonstrator’s unknown cost function{—}even if that cost function differs for each demonstration. We apply our approach on a computer cursor pointing task, producing behavior that is 78% superhuman, while minimizing demonstration suboptimality provides 50% superhuman behavior{—}and only 72% even after selective data cleaning. 
    more » « less