skip to main content


Title: Inconsistency of islands in theories with long-range gravity
A<sc>bstract</sc>

In ordinary gravitational theories, any local bulk operator in an entanglement wedge is accompanied by a long-range gravitational dressing that extends to the asymptotic part of the wedge. Islands are the only known examples of entanglement wedges that are disconnected from the asymptotic region of spacetime. In this paper, we show that the lack of an asymptotic region in islands creates a potential puzzle that involves the gravitational Gauss law, independently of whether or not there is a non-gravitational bath. In a theory with long-range gravity, the energy of an excitation localized to the island can be detected from outside the island, in contradiction with the principle that operators in an entanglement wedge should commute with operators from its complement. In several known examples, we show that this tension is resolved because islands appear in conjunction with a massive graviton. We also derive some additional consistency conditions that must be obeyed by islands in decoupled systems. Our arguments suggest that islands might not constitute consistent entanglement wedges in standard theories of massless gravity where the Gauss law applies.

 
more » « less
Award ID(s):
1915071
NSF-PAR ID:
10486488
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
SISSA
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2022
Issue:
1
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    Recent work has shown how to obtain the Page curve of an evaporating black hole from holographic computations of entanglement entropy. We show how these computations can be justified using the replica trick, from geometries with a spacetime wormhole connecting the different replicas. In a simple model, we study the Page transition in detail by summing replica geometries with different topologies. We compute related quantities in less detail in more complicated models, including JT gravity coupled to conformal matter and the SYK model. Separately, we give a direct gravitational argument for entanglement wedge reconstruction using an explicit formula known as the Petz map; again, a spacetime wormhole plays an important role. We discuss an interpretation of the wormhole geometries as part of some ensemble average implicit in the gravity description.

     
    more » « less
  2. null (Ed.)
    A bstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe. 
    more » « less
  3. Late-time dominance of entanglement islands plays a critical role in addressing the information paradox for black holes in AdS coupled to an asymptotic non-gravitational bath. A natural question is how this observation can be extended to gravitational systems. To gain insight into this question, we explore how this story is modified within the context of Karch-Randall braneworlds when we allow the asymptotic bath to couple to dynamical gravity. We find that because of the inability to separate degrees of freedom by spatial location when defining the radiation region, the entanglement entropy of radiation emitted into the bath is a time-independent constant, consistent with recent work on black hole information in asymptotically flat space. If we instead consider an entanglement entropy between two sectors of a specific division of the Hilbert space, we then find non-trivial time-dependence, with the Page time a monotonically decreasing function of the brane angle---provided both branes are below a particular angle. However, the properties of the entropy depend discontinuously on this angle, which is the first example of such discontinuous behavior for an AdS brane in AdS space.

     
    more » « less
  4. We propose swampland criteria for braneworlds viewed as effective field theories of defects coupled to semiclassical gravity. We do this by exploiting their holographic interpretation. We focus on general features of entanglement entropies and their holographic calculations. Entropies have to be positive. Furthermore, causality imposes certain constraints on the surfaces that are used holographically to compute them, most notably a property known as causal wedge inclusion. As a test case, we explicitly constrain the Dvali-Gabadadze-Porrati term as a second-order-in-derivatives correction to the Randall-Sundrum action. We conclude by discussing the implications of these criteria for the question on whether entanglement islands in theories with massless gravitons are possible in Karch-Randall braneworlds.

     
    more » « less
  5. null (Ed.)
    A bstract We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling. 
    more » « less