skip to main content


Title: Entanglement entropy in cubic gravitational theories
A bstract We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling.  more » « less
Award ID(s):
1820712
NSF-PAR ID:
10301152
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2021
Issue:
5
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Our ability to understand and simulate the reactions catalyzed by iron depends strongly on our ability to predict the relative energetics of spin states. In this work, we studied the electronic structures of Fe 2+ ion, gaseous FeO and 14 iron complexes using Kohn–Sham density functional theory with particular focus on determining the ground spin state of these species as well as the magnitudes of relevant spin-state energy splittings. The 14 iron complexes investigated in this work have hexacoordinate geometries of which seven are Fe( ii ), five are Fe( iii ) and two are Fe( iv ) complexes. These are calculated using 20 exchange–correlation functionals. In particular, we use a local spin density approximation (LSDA) – GVWN5, four generalized gradient approximations (GGAs) – BLYP, PBE, OPBE and OLYP, two non-separable gradient approximations (NGAs) – GAM and N12, two meta-GGAs – M06-L and M11-L, a meta-NGA – MN15-L, five hybrid GGAs – B3LYP, B3LYP*, PBE0, B97-3 and SOGGA11-X, four hybrid meta-GGAs – M06, PW6B95, MPW1B95 and M08-SO and a hybrid meta-NGA – MN15. The density functional results are compared to reference data, which include experimental results as well as the results of diffusion Monte Carlo (DMC) calculations and ligand field theory estimates from the literature. For the Fe 2+ ion, all functionals except M11-L correctly predict the ground spin state to be quintet. However, quantitatively, most of the functionals are not close to the experimentally determined spin-state splitting energies. For FeO all functionals predict quintet to be the ground spin state. For the 14 iron complexes, the hybrid functionals B3LYP, MPW1B95 and MN15 correctly predict the ground spin state of 13 out of 14 complexes and PW6B95 gets all the 14 complexes right. The local functionals, OPBE, OLYP and M06-L, predict the correct ground spin state for 12 out of 14 complexes. Two of the tested functionals are not recommended to be used for this type of study, in particular M08-SO and M11-L, because M08-SO systematically overstabilizes the high spin state, and M11-L systematically overstabilizes the low spin state. 
    more » « less
  2. Methane‐to‐methanol conversion (MMC) can be facilitated with high methanol selectivities by copper‐exchanged zeolites. There are however two open questions regarding the use of these zeolites to facilitate the MMC process. The first concerns the possibility of operating the three cycles in the stepwise MMC process by these zeolites in an isothermal fashion. The second concerns the possibility of improving the methanol yields by systematic substitution of some copper centers in these active sites with other earth‐abundant transition metals. Quantum‐mechanical computations can be used to compare methane activation by copper oxide species and analogous mixed‐metal systems. To carry out such screening, it is important that we use theoretical methods that are accurate and computationally affordable for describing the properties of the hetero‐metallic catalytic species. We have examined the performance of 47 exchange‐correlation density functionals for predicting the relative spin‐state energies and chemical reactivities of six hetero‐metallic [M‐O‐Cu]2+and [M‐O2‐Cu]2+, (where MCo, Fe, and Ni), species by comparison with coupled cluster theory including iterative single, double excitations as well as perturbative treatment of triple excitations, CCSD(T). We also performed multireference calculations on some of these systems. We considered two types of reactions (hydrogen addition and oxygen addition) that are relevant to MMC. We recommend the use of τ‐HCTH and OLYP to determine the spin‐state energy splittings in the hetero‐metallic motifs. ωB97, ωB97X, ωB97X‐D3, and MN15 performed best for predicting the energies of the hydrogen and oxygen addition reactions. In contrast, local, and semilocal functionals do poorly for chemical reactivity. Using [Fe‐O‐Cu]2+as a test, we see that the nonlocal functionals perform well for the methane CH activation barrier. In contrast, the semilocal functionals perform rather poorly. © 2018 Wiley Periodicals, Inc.

     
    more » « less
  3. Orbital-free density functional theory constitutes a computationally highly effective tool for modeling electronic structures of systems ranging from room-temperature materials to warm dense matter. Its accuracy critically depends on the employed kinetic energy (KE) density functional, which has to be supplied as an external input. In this work we consider several nonlocal and Laplacian-level KE functionals and use an external harmonic perturbation to compute the static density response at T=0 K in the linear and beyond-linear response regimes. We test for the satisfaction of exact conditions in the limit of uniform densities and for how approximate KE functionals reproduce the density response of realistic materials (e.g., Al and Si) against the Kohn-Sham DFT reference, which employs the exact KE. The results illustrate that several functionals violate exact conditions in the uniform electron gas (UEG) limit. We find a strong correlation between the accuracy of the KE functionals in the UEG limit and in the strongly inhomogeneous case. This empirically demonstrates the importance of imposing the limit of UEG response for uniform densities and validates the use of the Lindhard function in the formulation of kernels for nonlocal functionals. This conclusion is substantiated by additional calculations for bulk aluminum (Al) with a face-centered cubic (fcc) lattice and silicon (Si) with an fcc lattice, body-centered cubic (bcc) lattice, and semiconducting crystal diamond state. The analysis of fcc Al, and fcc as well as bcc Si data follows closely the conclusions drawn for the UEG, allowing us to extend our conclusions to realistic systems that are subject to density inhomogeneities induced by ions. 
    more » « less
  4. Abstract While the water storage capacities of the upper 700 km depths of the mantle have been constrained by high-pressure experiments and diamond inclusion studies, the storage capacity of the lower mantle remains controversial. A recent high-pressure experimental study on CaSiO3 perovskite, which is the third most abundant mineral in the lower mantle, reported possible storage of H2O up to a few weight percent. However, the substitution mechanism for H in this phase remains unknown. We have conducted a series of density functional theory calculations under static-lattice conditions and high pressures to elucidate hydration mechanisms at the atomic scale. All of the possible dodecahedral (Ca2+ → 2H+) and octahedral (Si4+ → 4H+) substitution configurations for a tetragonal perovskite lattice have very small energy differences, suggesting the coexistence of multiples of H configurations in CaSiO3 perovskite at mantle pressures and temperatures. The dodecahedral substitutions decrease the bulk modulus, resulting in a smaller unit-cell volume of hydrous CaSiO3 perovskite under pressure, consistent with the experimental observations. Although the octahedral substitutions also decrease the bulk modulus, they increase the unit-cell volume at 1 bar. The H atoms substituted in the dodecahedral sites develop much less hydrogen bonding with O atoms, leading to a large distortion in the neighboring SiO6 octahedra. Such distortion may be responsible for the non-cubic peak splittings observed in experiments on hydrous CaSiO3 perovskite. Our calculated infrared spectra suggest that the observed broad OH modes in CaSiO3 perovskite can result from the existence of multiples of H configurations in the phase. Combined with the recent experimental results, our study suggests that CaSiO3 can be an important mineral phase to consider for the H2O storage in the lower mantle. 
    more » « less
  5. null (Ed.)
    A bstract We study the problem of revealing the entanglement wedge using simple operations. We ask what operation a semiclassical observer can do to bring the entanglement wedge into causal contact with the boundary, via backreaction. In a generic perturbative class of states, we propose a unitary operation in the causal wedge whose backreaction brings all of the previously causally inaccessible ‘peninsula’ into causal contact with the boundary. This class of cases includes entanglement wedges associated to boundary sub-regions that are unions of disjoint spherical caps, and the protocol works to first order in the size of the peninsula. The unitary is closely related to the so-called Connes Cocycle flow, which is a unitary that is both well-defined in QFT and localised to a sub-region. Our construction requires a generalization of the work by Ceyhan & Faulkner to regions which are unions of disconnected spherical caps. We discuss this generalization in the appendix. We argue that this cocycle should be thought of as naturally generalizing the non-local coupling introduced in the work of Gao, Jafferis & Wall. 
    more » « less