skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Consequences of a stabilizing field’s self-interactions for RS cosmology
A<sc>bstract</sc> It has been argued that the Randall-Sundrum (RS) phase transition rate is suppressed when the holographic theory corresponds to a largeNYang-Mills and when the stabilizing field has a small mass. Here we argue that self-interactions can alleviate the latter suppression. We consider a cubic term in the bulk potential for the Goldberger-Wise (GW) scalar that is responsible for stabilizing the RS geometry. Adding a cubic term suffices to separate the two roles of the GW stabilization: generating a large hierarchy and triggering confinement. We study the resulting radion potential and the dynamics of the early universe phase transition. For a negative coefficient of the cubic term, the effect of the cubic becomes important in the infra-red, and the resulting radion potential is deeper, thereby increasing the radion mass while maintaining a large hierarchy. Staying within the radion effective field theory, we calculate the rate of bubble nucleation from the hot phase to the confined RS phase, both in thin and thick wall limits. The cubic term enhances the rate and allows relaxing the condition on the maximum number of colorsNmaxof the dual theory for which the phase transition can be completed. Importantly, this reduces the amount of supercooling that the false vacuum undergoes, increases the peak frequency of the gravitational waves (GW) produced from bubble collisions, and reduces the strength of the GW signal. The reduced GW signal is however still within the reach of proposed space-based GW detectors.  more » « less
Award ID(s):
1915071
PAR ID:
10486503
Author(s) / Creator(s):
;
Publisher / Repository:
SISSA
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
12
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider the conundrum of generating de Sitter space from higher‐dimensional geometry, with particular attention to KKLT‐type constructions[3] and their 5d implications. We show that even in the probe approximation with small, a consistent higher‐dimensional solution requires a deformation of a modulus field playing the role of a Goldberger‐Wise stabilizing field in Randall‐Sundrum type geometries that occurs through a shift in a the throat length. We identify the light radion field that sets the length of the throat, whose origin is the dynamical conifold deformation parameter. By analyzing the theory as a 5d model of mismatched branes in AdS5 space with a GW stabilization mechanism, we show how energy (and supersymmetry breaking) is transferred to both the IR and UV regions of the throat to generate a consistent 4d de Sitter sliced geometry. This should help resolve some of the recent apparent paradoxes in explicit higher‐dimensional constructions. Moreover, the radion gives insight into the potential for the previously identified “conifold instability”. We argue that this instability would be a destabilization of the potential for the radion in KKLT, which can occur when the perturbation is too large. If indeedis too small, the radion would enter on its runaway direction and the conifold deformation would shrink to zero size. It is difficult to satisfy the required bound and a) maintain a hierarchy in the simpler CY manifolds and b) complete the cosmological phase transition into the stabilized throat, We also discuss the implications of this type of setup for supersymmetry breaking, and how multiple throats can introduce hierarchies of supersymmetry breaking masses, even in an anomaly‐mediated scenario. In an appendix we consider general compactification constraints. 
    more » « less
  2. A<sc>bstract</sc> Conformal Freeze-in (COFI) scenario postulates a dark sector described by a conformal field theory (CFT) at energies above the “gap scale” in the keV – MeV range. At the gap scale, the dark CFT undergoes confinement, and one of the resulting bound states is identified as the dark matter candidate. In this paper, we study this model in the context of the AdS/CFT correspondence with a focus on the mechanism of the infrared (IR) breaking of conformal invariance in the dark sector. We construct the holographic dual to the conformal dark sector, given by a Randall-Sundrum-like model in 5D, where the Standard Model (SM) fields and the dark matter candidate are placed on the ultraviolet (UV) and IR branes respectively. The separation between the UV and IR branes is stabilized by a bulk scalar field, naturally generating a hierarchy between the electroweak scale and the gap scale. We find that the parameter space of COFI comprises two distinct branches of CFT’s living on the Anti-de-Sitter (AdS) boundary, each corresponding to a different UV boundary condition. The two branches of CFT’s result in different radion potentials. The confinement of the CFT is dual to the spontaneous symmetry breaking by the 5D radion potential. We then use this dual 5D setup to study the cosmological confining phase transition in the dark sector. We find the viable parameter space of the theory which allows the phase transition to complete promptly without significant supercooling. 
    more » « less
  3. null (Ed.)
    A bstract We study the cosmological transition of 5D warped compactifications, from the high-temperature black-brane phase to the low-temperature Randall-Sundrum I phase. The transition proceeds via percolation of bubbles of IR-brane nucleating from the black-brane horizon. The violent bubble dynamics can be a powerful source of observable stochastic gravitational waves. While bubble nucleation is non-perturbative in 5D gravity, it is amenable to semiclassical treatment in terms of a “bounce” configuration interpolating between the two phases. We demonstrate how such a bounce configuration can be smooth enough to maintain 5D effective field theory control, and how a simple ansatz for it places a rigorous lower-bound on the transition rate in the thin-wall regime, and gives plausible estimates more generally. When applied to the Hierarchy Problem, the minimal Goldberger-Wise stabilization of the warped throat leads to a slow transition with significant supercooling. We demonstrate that a simple generalization of the Goldberger-Wise potential modifies the IR-brane dynamics so that the transition completes more promptly. Supercooling determines the dilution of any (dark) matter abundances generated before the transition, potentially at odds with data, while the prompter transition resolves such tensions. We discuss the impact of the different possibilities on the strength of the gravitational wave signals. Via AdS/CFT duality the warped transition gives a theoretically tractable holographic description of the 4D Composite Higgs (de)confinement transition. Our generalization of the Goldberger-Wise mechanism is dual to, and concretely models, our earlier proposal in which the composite dynamics is governed by separate UV and IR RG fixed points. The smooth 5D bounce configuration we introduce complements the 4D dilaton/radion dominance derivation presented in our earlier work. 
    more » « less
  4. A bstract We propose a simple modification of the Goldberger-Wise mechanism for stabilizing the scale of spontaneously broken conformal theories. The source of explicit conformal symmetry breaking is a relevant operator with a small coefficient, as opposed to the usual mechanism of an almost marginal operator with an order-one coefficient. In the warped 5D picture this relevant stabilization corresponds to a small tadpole for the bulk scalar on the UV brane, which can be technically natural if it is the only source for the breaking of a symmetry (for example, a discrete Z 2 ). This modification of the stabilization mechanism has significant consequences for the nature of the conformal phase transition, since the radion/dilaton potential is no longer shallow. The bounce action is significantly reduced, leading to a weaker first-order phase transition instead of the supercooled and strongly first-order transition seen in Goldberger-Wise stabilization. This also leads to reduction of gravitational wave signals which, however, may still be observable at future detectors. We present numerical and analytical studies of the phase transition and the resulting gravitational wave signal strength, assuming that the effective dilaton potential provides a good leading approximation. While the dilaton is not expected to be generically light in this setup, in order to keep perturbative control over the effective theory one needs to mildly tune the dilaton quartic to be somewhat small. 
    more » « less
  5. Abstract Obtaining a precise form for the predicted gravitational wave (GW) spectrum from a phase transition is a topic of great relevance for beyond Standard Model (BSM) physicists. Currently, the most sophisticated semi-analytic framework for estimating the dominant contribution to the spectrum is the sound shell model; however, full calculations within this framework can be computationally expensive, especially for large-scale scans. The community therefore generally manages with fit functions to the GW spectrum, the most widely used of which is a single broken power law. We provide a more precise fit function based on the sound shell model: our fit function features a double broken power law with two frequency breaks corresponding to the two characteristic length scales of the problem — inter-bubble spacing and thickness of sound shells, the second of which is neglected in the single broken power law fit. Compared to previously proposed fits, we demonstrate that our fit function more faithfully captures the GW spectrum coming from a full calculation of the sound shell model, over most of the space of the thermodynamic parameters governing the phase transition. The physical origins of the fit parameters and their dependence on the thermodynamic parameters are studied in the underlying sound shell model: in particular, we perform a series of detailed scans for these quantities over the plane of thestrength of the phase transition (α) and the bubble wall velocity (vw). Wherever possible, we comment on the physical interpretations of these scans. From a user-end perspective, we provide data files and scripts inPythonandMathematicathat can be directly utilized by a front-end user to generate accurate GW spectra with our fit function, given initial inputs ofα,vw,β/H(nucleation rate parameter) andTn(nucleation temperature) for the relevant BSM scenario.https://github.com/SFH2024/precise-fit-fopt-gw. 
    more » « less