A formal pedagogical push emerged and later blossomed in designing integrated curriculum between STEM and non-STEM areas in secondary and higher education. A growing cadre of research identifies positive learning outcomes for students participating in an integrated curriculum who apply basic STEM knowledge to investigate social problems and justice issues within social contexts. Research indicates STEM students demonstrate fewer concerns with social issues, often placing a greater interest in the value of individualism. This article outlines a new integrative course, Science, Society and Self, which was supported by a National Science Foundation grant to Iona College in the Scholarships in Science, Technology, Engineering, and Mathematics (S-STEM) program. The Development of Excellence in Science through Intervention, Resilience, and Enrichment (DESIRE) program seeks to increase retention and graduation rates for economically disadvantaged and high-aptitude STEM majors. Skills important for success in STEM courses are reviewed, as are service-learning and policy applications. We also explore the intersections between nature of science (NOS) and sociological concepts. This culminates in distinguishing public science issues by connecting the intersections of human biographies, history, and societal structures through the sociological imagination, as conceived by C. Wright Mills.
more »
« less
Near Peer Pedagogies for Culturally Sustaining Computer Science and Mathematics
In this study, College STEM Literacy Workers act as co-teachers in 9th and 10th grade classrooms alongside mathematics teachers as they both learn to integrate a 30-hour integrated computer science/mathematics curriculum. As part of the curriculum for educator learning, we adapted the Algebra Project’s “Model of Excellence” for culturally relevant-sustaining pedagogies. We used the framework to explore how teachers understand College STEM Literacy Workers’ contributions in the model as well as College STEM Literacy Workers’ own experiences in the classroom. We found that while teachers and College STEM Literacy Workers did not individually instantiate the model of excellence, they were able to achieve its constituent components between them. We explore differences between teachers and College STEM Literacy Workers and the ways in which they worked together. We end with implications for a new model of excellence.
more »
« less
- Award ID(s):
- 2031455
- PAR ID:
- 10486603
- Publisher / Repository:
- Armacost Library, University of Redlands
- Date Published:
- Journal Name:
- Journal of Computer Science Integration
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2574-108X
- Subject(s) / Keyword(s):
- near-peer, youth, mathematics, computer science, culturally relevant, culturally sustaining
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The pipeline of highly trained STEM (science, technology, engineering, and mathematics) professionals has narrowed in recent decades, forcing society to re‐examine how schools are discovering and developing STEM talent. Of particular concern is the finding that rural students attend post‐secondary schools at lower rates than their urban counterparts, and when they do attend, they are less likely to graduate from STEM programs. One reason may be that they are not prepared for advanced STEM coursework because they lack access to essential STEM talent‐development programs in middle or high school. This creates excellence gaps, which exacerbate the narrowing STEM pipeline to the workforce. To address this, we formed a university–school partnership to develop an outside‐of‐school STEM talent development program, called STEM Excellence, for rural middle‐school students who attend under‐resourced schools. The aim of STEM Excellence was to increase students’ achievement and aspirations while empowering their teachers to develop local STEM programs grounded in developmental psychology theories. STEM Excellence integrated the Talent Development Megamodel Principles of ability, domains of talent, opportunity, and psychosocial variables. STEM Excellence also recognized the interplay of multiple person–environment systems as presented in the Bioecological Systems Model.more » « less
-
There is a lack of teacher education materials that develop equity literacy in content courses for preservice secondary mathematics teachers. In response, we created teacher education curriculum materials for introductory statistics that include an integrated focus on developing equity literacy and critical statistical literacy. In this article, we provide an overview of our materials’ design along with a detailed look at one activity regarding racial demographics and tracking in high school STEM courses. We present evidence regarding the positive impact of these materials on the teacher candidates’ competency, value, and likelihood of applying their equity literacy and critical statistical literacy. Implications for mathematics teacher educators working to develop equity literacy together with content knowledge are discussed.more » « less
-
Curricula enhanced through the use of digital games can benefit students in their interest and learning of Science, Technology, Engineering, and Mathematics (STEM) concepts. Elementary teachers’ likelihood to embrace and use game-enhanced instructional approaches with integrity in mathematics has not been extensively studied. In this study, a sequential mixed methods design was employed to investigate the feasibility of a game-enhanced supplemental fraction curriculum in elementary classrooms, including how teachers implemented the curriculum, their perspectives and experiences as they used it, and their students’ resulting fraction learning and STEM interest. Teachers implemented the supplemental curriculum with varying adherence but had common experiences throughout their implementation. Teachers expressed experiences related to (1) time, (2) curriculum being too different, and (3) too difficult for students. Their strategies to handle those phenomena varied. Teachers that demonstrated higher adherence to the game-enhanced supplemental fraction curriculum had students that displayed higher STEM interest and fraction learning. While this study helps to better understand elementary teachers’ experiences with game-enhanced mathematics curricula, implications for further research and program development are also discussed.more » « less
-
Kong, S.C. (Ed.)This work aims to help high school STEM teachers integrate computational thinking (CT) into their classrooms by engaging teachers as curriculum co-designers. K-12 teachers who are not trained in computer science may not see the value of CT in STEM classrooms and how to engage their students in computational practices that reflect the practices of STEM professionals. To this end, we developed a 4-week professional development workshop for eight science and mathematics high school teachers to co-design computationally enhanced curriculum with our team of researchers. The workshop first provided an introduction to computational practices and tools for STEM education. Then, teachers engaged in co-design to enhance their science and mathematics curricula with computational practices in STEM. Data from surveys and interviews showed that teachers learned about computational thinking, computational tools, coding, and the value of collaboration after the professional development. Further, they were able to integrate multiple computational tools that engage their students in CT-STEM practices. These findings suggest that teachers can learn to use computational practices and tools through workshops, and that teachers collaborating with researchers in co-design to develop computational enhanced STEM curriculum may be a powerful way to engage students and teachers with CT in K-12 classrooms.more » « less
An official website of the United States government

