skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biocompatible 3D Printed MXene Microlattices for Tissue‐Integrated Antibiotic Sensing
Abstract 3D continuous mesoscale architectures of nanomaterials possess the potential to revolutionize real‐time electrochemical biosensing through higher active site density and improved accessibility for cell proliferation. Herein, 3D microporous Ti3C2TXMXene biosensors are fabricated to monitor antibiotic release in tissue engineering scaffolds. The Ti3C2TX‐coated 3D electrodes are prepared by conformal MXene deposition on 3D‐printed polymer microlattices. The Ti3C2TXMXene coating facilitates direct electron transfer, leading to the efficient detection of common antibiotics such as gentamicin and vancomycin. The 3D microporous architecture exposes greater electrochemically active MXene surface area, resulting in remarkable sensitivity for detecting gentamicin (10–1 mM) and vancomycin (100–1 mM), 1000 times more sensitive than control electrodes composed of 2D planar films of Ti3C2TXMXene. To characterize the suitability of 3D microporous Ti3C2TXMXene sensors for monitoring drug elution in bone tissue regeneration applications, osteoblast‐like (MG‐63) cells are seeded on the 3D MXene microlattices for 3, 5, and 7 days. Cell proliferation on the 3D microporous MXene is tracked over 7 days, demonstrating its promising biocompatibility and its clinical translation potential. Thus, 3D microporous Ti3C2TXMXene can provide a platform for mediator‐free biosensing, enabling new applications for in vivo monitoring of drug elution.  more » « less
Award ID(s):
1757371
PAR ID:
10486644
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Materials Technologies
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Current advancements in battery technologies require electrodes to combine high-performance active materials such as Silicon (Si) with two-dimensional materials such as transition metal carbides (MXenes) for prolonged cycle stability and enhanced electrochemical performance. More so, it is the interface between these materials, which is the nexus for their applicatory success. Herein, the interface strength variations between amorphous Si and Ti 3 C 2 T x MXenes are determined as the MXene surface functional groups ( T x ) are changed using first principles calculations. Si is interfaced with three Ti 3 C 2 MXene substrates having surface −OH, −OH and −O mixed, and −F functional groups. Density functional theory (DFT) results reveal that completely hydroxylated Ti 3 C 2 has the highest interface strength of 0.6 J m −2 with amorphous Si. This interface strength value drops as the proportion of surface −O and −F groups increases. Additional analysis of electron redistribution and charge separation across the interface is provided for a complete understanding of underlying physico-chemical factors affecting the surface chemistry and resultant interface strength values. The presented comprehensive analysis of the interface aims to develop sophisticated MXene based electrodes by their targeted surface engineering. 
    more » « less
  2. Abstract 2D material hydrogels have recently sparked tremendous interest owing to their potential in diverse applications. However, research on the emerging 2D MXene hydrogels is still in its infancy. Herein, we show a universal 4D printing technology for manufacturing MXene hydrogels with customizable geometries, which suits a family of MXenes such as Nb 2 CT x , Ti 3 C 2 T x , and Mo 2 Ti 2 C 3 T x . The obtained MXene hydrogels offer 3D porous architectures, large specific surface areas, high electrical conductivities, and satisfying mechanical properties. Consequently, ultrahigh capacitance (3.32 F cm −2 (10 mV s −1 ) and 233 F g −1 (10 V s −1 )) and mass loading/thickness-independent rate capabilities are achieved. The further 4D-printed Ti 3 C 2 T x hydrogel micro-supercapacitors showcase great low-temperature tolerance (down to –20 °C) and deliver high energy and power densities up to 93 μWh cm −2 and 7 mW cm −2 , respectively, surpassing most state-of-the-art devices. This work brings new insights into MXene hydrogel manufacturing and expands the range of their potential applications. 
    more » « less
  3. Ti3C2TxMXene membranes have attracted considerable interest due to their exceptional water transport properties, yet the role of cation intercalation on governing transport remains poorly understood. In this experimental and theoretical study, it shows how intercalation with K+, Na+, Li+, Ca2+, and Mg2+modulates both the nanochannel architecture and water flux of Ti3C2Txmembranes. Unlike in graphene oxide analogs, cations with larger hydration diameters in Ti3C2Txexpand the interlayer spacing, widening flow channels, enhancing slip length of these nanochannels, and boosting water flux from 31.45 to 61.86 L m−2 h−1. To overcome intrinsically poor adhesion of Ti3C2Txto polymeric supports, this study incorporates a thin polyvinyl‐alcohol interlayer, which substantially enhances mechanical robustness and structural integrity. Together, these findings elucidate how cation hydration controls water transport and offer a flexible strategy for tailoring MXene membrane performance. 
    more » « less
  4. Transition metal carbides (MXenes) are an emerging family of highly conductive two-dimensional materials with additional functional properties introduced by surface terminations. Further modification of the surface terminations makes MXenes even more appealing for practical applications. Herein, we report a facile and environmentally benign synthesis of reduced Ti 3 C 2 T x MXene (r-Ti 3 C 2 T x ) via a simple treatment with l -ascorbic acid at room temperature. r-Ti 3 C 2 T x shows a six-fold increase in electrical conductivity, from 471 ± 49 for regular Ti 3 C 2 T x to 2819 ± 306 S m −1 for the reduced version. Additionally, we show an enhanced oxidation stability of r-Ti 3 C 2 T x as compared to regular Ti 3 C 2 T x . An examination of the surface-enhanced Raman scattering (SERS) activity reveals that the SERS enhancement factor of r-Ti 3 C 2 T x is an order of magnitude higher than that of regular Ti 3 C 2 T x . The improved SERS activity of r-Ti 3 C 2 T x is attributed to the charge transfer interaction between the MXene surface and probe molecules, re-enforced by an increased electronic density of states (DOS) at the Fermi level of r-Ti 3 C 2 T x . The findings of this study suggest that reduced MXene could be a superior choice over regular MXene, especially for the applications that employ high electronic conductivity, such as electrode materials for batteries and supercapacitors, photodetectors, and SERS-based sensors. 
    more » « less
  5. Abstract Surface chemistry and core composition of 2D MXenes play a major role in their interfacial properties, but the determination and quantification of their bonding environments remain challenging. X‐ray Photoelectron Spectroscopy (XPS) is a method of choice that is broadly utilized but is often hindered by large uncertainties and systematic bias due to adsorbed species such as adventitious carbon or etching residues. In this work, energy‐dependent XPS and depth profile modeling of the Ti3C2TxMXene surface are employed to differentiate the contributions from the MXene and the adsorbed species, thereby increasing the accuracy of quantification. In comparison, uncorrected lab‐based XPS suffers from a systematic overestimation of Ti vacancies by 7% and an underestimation of terminal atoms, particularly F, by as much as 15%. Interestingly, it is found that a simple inelastic mean free path correction is sufficient to address the issue and reveals extremely low defects in Ti3C2TxMXene synthesized using the HF/HCl etching route. Soft X‐ray Absorption Spectroscopy (XAS), supported by Density Functional Theory (DFT) calculations, also demonstrates a high chemical sensitivity of the surface terminations. This work provides novel insights into XPS quantification and the use of XAS for probing the carbide core and surface chemistry of Ti3C2TxMXenes. 
    more » « less