skip to main content


Title: Physical-layer impairment estimation for random bandwidth traffic

Traffic demands in future elastic optical networks are expected to be heterogeneous with time-varying bandwidth. Estimating the physical-layer impairments (PLIs) for random bandwidth demands is important for cross-layer network resource provisioning. State-of-the-art PLI estimation techniques yield conservative PLI estimates using the maximum bandwidth, which leads to significant over-provisioning. This paper uses probabilistic information on random bandwidth demands to provide a computationally efficient, accurate, and flexible PLI estimate. The proposed model is consistent with the needs of future self-configuring fiber-optic networks and maximally avoids up to a 25% overestimation of PLIs compared to the benchmark for the cases studied, thus reducing the network design margin at a negligible extra computational cost.

 
more » « less
Award ID(s):
1718130
NSF-PAR ID:
10486700
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Journal of Optical Communications and Networking
Volume:
16
Issue:
2
ISSN:
1943-0620; JOCNBB
Format(s):
Medium: X Size: Article No. 104
Size(s):
["Article No. 104"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Flexible grid networks need rigorous resource planning to avoid network over-dimensioning and resource over-provisioning. The network must provision the hardware and spectrum resources statically, even for dynamic random bandwidth demands, due to the infrastructure of flexible grid networks, hardware limitations, and reconfiguration speed of the control plane. We propose a flexible online–offline probabilistic (FOOP) algorithm for the static spectrum assignment of random bandwidth demands. The FOOP algorithm considers the probabilistic nature of random bandwidth demands and balances hardware and control plane pressures with spectrum assignment efficiency. The FOOP algorithm uses the probabilistic spectrum Gaussian noise (PSGN) model to estimate the physical-layer impairment (PLI) for random bandwidth traffic. Compared to a benchmark spectrum assignment algorithm and a widely applied PLI estimation model, the proposed FOOP algorithm using the PSGN model saves up to 49% of network resources.

     
    more » « less
  2. In long-haul fiber-optic networks, precise modeling of physical-layer impairments (PLIs) is crucial to optimizing network resource usage while ensuring adequate transmission quality. In order to accurately estimate PLIs, many mathematical models have been proposed. Among them, the so-called Gaussian noise (GN) model is one of the most accurate and simple enough to use on complex continental-size networks. However, the closed-form GN model assumes that the signals can be represented as having rectangular spectra, leading to a significant estimation error in typical cases when this assumption is violated. We propose the component-wise Gaussian noise (CWGN) PLI model that can account for arbitrary spectral-shaped demands. The CWGN model is computationally simple and suitable for most network management approaches. Results indicate that the CWGN model can prevent as much as a 136% overestimation of the PLIs resulting from the closed-form GN model applied to network lightpaths containing cascaded filters. 
    more » « less
  3. In this paper, we present Dynamic Cross-layer Network Orchestration (DyCroNO), a dynamic service provisioning and load balancing mechanism for IP over optical networks. DyCroNO comprises of the following components: i) an end-end (E2E) service provisioning and virtual path allocation algorithm, ii) a lightweight dynamic bandwidth adjustment strategy that leverages the extended duration statistics to ensure optimal network utilization and guarantee the quality-of-service (QoS), and iii) a load distribution mechanism to optimize the network load distribution at runtime. As another contribution, we design a real-time deep learning technique to predict the network load distribution. We implemented a Long Short-Term Memory-based (LSTM) method with a sliding window technique to dynamically (at runtime) predict network load distributions at various lead times. Simulations were performed over three topologies: NSFNet, Cost266 and Eurolarge using real-world traffic traces to model the traffic patterns. Results show that our approach lowers the mean link load and total resources significantly while improving the resource utilization when compared to existing approaches. Additionally, our deep learning-based method showed promising results in load distribution prediction with low root mean squared error (RMSE) and ∼90% accuracy. URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10144888&isnumber=10144840 
    more » « less
  4. Science is being conducted in an era of information abundance. The rate at which science data is generated is increasing, both in volume and variety. This phenomenon is transforming how science is thought of and practiced. This transformation is being shaped by new scientific instruments that are being designed and deployed that will dramatically increase the need for large, real-time data transfers among scientists throughout the world. One such instrument is the Square Kilometer Array (SKA) being built in South Africa that will transmit approximately 160Gbps of data from each radio dish to a central processor. This paper describes a collaborative effort to respond to the demands of big data scientific instruments through the development of an international software defined exchange point (SDX) that will meet the network provisioning needs for science applications. This paper discusses the challenges of end-to-end path provisioning across multiple research and education networks using OpenFlow/SDN technologies. Furthermore, it refers to the AtlanticWave-SDX, a project at Florida International University and the Georgia Institute of Technology, funded by the US National Science Foundation (NSF), along with support from Brazil’s NREN, Rede Nacional de Ensino e Pesquisa (RNP, and the Academic Network of Sao Paulo (ANSP). Future work explores the feasibility of establishing an SDX in West Africa, in collaboration with regional African RENs, based on the planned availability of submarine cable spectrum for use by research and education communities. 
    more » « less
  5. Service provisioning can be enhanced with spectrally spatially flexible optical networks (SS-FONs) with multicore fibers; however, intercore crosstalk (XT) is a dominant impairment that complicates the problem of maintaining the quality of transmission (QoT) and resource allocation. The selection of modulation formats (MFs), due to their unique XT sensitivities, further increases the complexity. The routing, modulation, core, and spectrum assignment (RMCSA) problem must select the resources carefully to exploit the available capacity while meeting the desired QoT. In this paper, we propose an RMCSA algorithm called the tridental resource assignment (TRA) algorithm for transparent SS-FONs, and its variant, translucency-aware TRA (TaTRA), for translucent SS-FONs. TRA balances three different factors that affect network performance under dynamic resource allocation. We consider translucent networks with flexible regeneration and with and without modulation and spectrum conversion. Our resource assignment approach includes both an offline network planning component to calculate path priorities and an online/dynamic provisioning component to allocate resources. Extensive simulation experiments performed in realistic network scenarios indicate that TRA and TaTRA significantly reduce the bandwidth blocking probability by several orders of magnitude in some cases.

     
    more » « less