skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on January 20, 2025

Title: Move schedules: fast persistence computations in coarse dynamic settings
Abstract

Matrix reduction is the standard procedure for computing the persistent homology of a filtered simplicial complex withmsimplices. Its output is a particular decomposition of the total boundary matrix, from which the persistence diagrams and generating cycles are derived. Persistence diagrams are known to vary continuously with respect to their input, motivating the study of their computation for time-varying filtered complexes. Computing persistence dynamically can be reduced to maintaining a valid decomposition under adjacent transpositions in the filtration order. Since there are$$O(m^2)$$O(m2)such transpositions, this maintenance procedure exhibits limited scalability and is often too fine for many applications. We propose a coarser strategy for maintaining the decomposition over a 1-parameter family of filtrations. By reduction to a particular longest common subsequence problem, we show that the minimal number of decomposition updatesdcan be found in$$O(m \log \log m)$$O(mloglogm)time andO(m) space, and that the corresponding sequence of permutations—which we call aschedule—can be constructed in$$O(d m \log m)$$O(dmlogm)time. We also show that, in expectation, the storage needed to employ this strategy is actually sublinear inm. Exploiting this connection, we show experimentally that the decrease in operations to compute diagrams across a family of filtrations is proportional to the difference between the expected quadratic number of states and the proposed sublinear coarsening. Applications to video data, dynamic metric space data, and multiparameter persistence are also presented.

 
more » « less
Award ID(s):
2006661 1943758 2415445
NSF-PAR ID:
10486734
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Journal of Applied and Computational Topology
ISSN:
2367-1726
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The notion of generalized rank in the context of multiparameter persistence has become an important ingredient for defining interesting homological structures such as generalized persistence diagrams. However, its efficient computation has not yet been studied in the literature. We show that the generalized rank over a finite intervalIof a$$\textbf{Z}^2$$Z2-indexed persistence moduleMis equal to the generalized rank of the zigzag module that is induced on a certain path inItracing mostly its boundary. Hence, we can compute the generalized rank ofMoverIby computing the barcode of the zigzag module obtained by restricting to that path. IfMis the homology of a bifiltrationFof$$t$$tsimplices (while accounting for multi-criticality) andIconsists of$$t$$tpoints, this computation takes$$O(t^\omega )$$O(tω)time where$$\omega \in [2,2.373)$$ω[2,2.373)is the exponent of matrix multiplication. We apply this result to obtain an improved algorithm for the following problem. Given a bifiltration inducing a moduleM, determine whetherMis interval decomposable and, if so, compute all intervals supporting its indecomposable summands.

     
    more » « less
  2. Abstract

    We study a family of invariants of compact metric spaces that combines the Curvature Sets defined by Gromov in the 1980 s with Vietoris–Rips Persistent Homology. For given integers$$k\ge 0$$k0and$$n\ge 1$$n1we consider the dimensionkVietoris–Rips persistence diagrams ofallsubsets of a given metric space with cardinality at mostn. We call these invariantspersistence setsand denote them as$${\textbf{D}}_{n,k}^{\textrm{VR}}$$Dn,kVR. We first point out that this family encompasses the usual Vietoris–Rips diagrams. We then establish that (1) for certain range of values of the parametersnandk, computing these invariants is significantly more efficient than computing the usual Vietoris–Rips persistence diagrams, (2) these invariants have very good discriminating power and, in many cases, capture information that is imperceptible through standard Vietoris–Rips persistence diagrams, and (3) they enjoy stability properties analogous to those of the usual Vietoris–Rips persistence diagrams. We precisely characterize some of them in the case of spheres and surfaces with constant curvature using a generalization of Ptolemy’s inequality. We also identify a rich family of metric graphs for which$${\textbf{D}}_{4,1}^{\textrm{VR}}$$D4,1VRfully recovers their homotopy type by studying split-metric decompositions. Along the way we prove some useful properties of Vietoris–Rips persistence diagrams using Mayer–Vietoris sequences. These yield a geometric algorithm for computing the Vietoris–Rips persistence diagram of a spaceXwith cardinality$$2k+2$$2k+2with quadratic time complexity as opposed to the much higher cost incurred by the usual algebraic algorithms relying on matrix reduction.

     
    more » « less
  3. Abstract

    Sequence mappability is an important task in genome resequencing. In the (km)-mappability problem, for a given sequenceTof lengthn, the goal is to compute a table whoseith entry is the number of indices$$j \ne i$$jisuch that the length-msubstrings ofTstarting at positionsiandjhave at mostkmismatches. Previous works on this problem focused on heuristics computing a rough approximation of the result or on the case of$$k=1$$k=1. We present several efficient algorithms for the general case of the problem. Our main result is an algorithm that, for$$k=O(1)$$k=O(1), works in$$O(n)$$O(n)space and, with high probability, in$$O(n \cdot \min \{m^k,\log ^k n\})$$O(n·min{mk,logkn})time. Our algorithm requires a careful adaptation of thek-errata trees of Cole et al. [STOC 2004] to avoid multiple counting of pairs of substrings. Our technique can also be applied to solve the all-pairs Hamming distance problem introduced by Crochemore et al. [WABI 2017]. We further develop$$O(n^2)$$O(n2)-time algorithms to computeall(km)-mappability tables for a fixedmand all$$k\in \{0,\ldots ,m\}$$k{0,,m}or a fixedkand all$$m\in \{k,\ldots ,n\}$$m{k,,n}. Finally, we show that, for$$k,m = \Theta (\log n)$$k,m=Θ(logn), the (km)-mappability problem cannot be solved in strongly subquadratic time unless the Strong Exponential Time Hypothesis fails. This is an improved and extended version of a paper presented at SPIRE 2018.

     
    more » « less
  4. Abstract

    The Dushnik–Miller dimension of a posetPis the leastdfor whichPcan be embedded into a product ofdchains. Lewis and Souza isibility order on the interval of integers$$[N/\kappa , N]$$[N/κ,N]is bounded above by$$\kappa (\log \kappa )^{1+o(1)}$$κ(logκ)1+o(1)and below by$$\Omega ((\log \kappa /\log \log \kappa )^2)$$Ω((logκ/loglogκ)2). We improve the upper bound to$$O((\log \kappa )^3/(\log \log \kappa )^2).$$O((logκ)3/(loglogκ)2).We deduce this bound from a more general result on posets of multisets ordered by inclusion. We also consider other divisibility orders and give a bound for polynomials ordered by divisibility.

     
    more » « less
  5. Abstract

    In this paper, we study multistage stochastic mixed-integer nonlinear programs (MS-MINLP). This general class of problems encompasses, as important special cases, multistage stochastic convex optimization withnon-Lipschitzianvalue functions and multistage stochastic mixed-integer linear optimization. We develop stochastic dual dynamic programming (SDDP) type algorithms with nested decomposition, deterministic sampling, and stochastic sampling. The key ingredient is a new type of cuts based on generalized conjugacy. Several interesting classes of MS-MINLP are identified, where the new algorithms are guaranteed to obtain the global optimum without the assumption of complete recourse. This significantly generalizes the classic SDDP algorithms. We also characterize the iteration complexity of the proposed algorithms. In particular, for a$$(T+1)$$(T+1)-stage stochastic MINLP satisfyingL-exact Lipschitz regularization withd-dimensional state spaces, to obtain an$$\varepsilon $$ε-optimal root node solution, we prove that the number of iterations of the proposed deterministic sampling algorithm is upper bounded by$${\mathcal {O}}((\frac{2LT}{\varepsilon })^d)$$O((2LTε)d), and is lower bounded by$${\mathcal {O}}((\frac{LT}{4\varepsilon })^d)$$O((LT4ε)d)for the general case or by$${\mathcal {O}}((\frac{LT}{8\varepsilon })^{d/2-1})$$O((LT8ε)d/2-1)for the convex case. This shows that the obtained complexity bounds are rather sharp. It also reveals that the iteration complexity dependspolynomiallyon the number of stages. We further show that the iteration complexity dependslinearlyonT, if all the state spaces are finite sets, or if we seek a$$(T\varepsilon )$$(Tε)-optimal solution when the state spaces are infinite sets, i.e. allowing the optimality gap to scale withT. To the best of our knowledge, this is the first work that reports global optimization algorithms as well as iteration complexity results for solving such a large class of multistage stochastic programs. The iteration complexity study resolves a conjecture by the late Prof. Shabbir Ahmed in the general setting of multistage stochastic mixed-integer optimization.

     
    more » « less