Sn‐based perovskites are promising Pb‐free photovoltaic materials with an ideal 1.3 eV bandgap. However, to date, Sn‐based thin film perovskite solar cells have yielded relatively low power conversion efficiencies (PCEs). This is traced to their poor photophysical properties (i.e., short diffusion lengths (<30 nm) and two orders of magnitude higher defect densities) than Pb‐based systems. Herein, it is revealed that melt‐synthesized cesium tin iodide (CsSnI3) ingots containing high‐quality large single crystal (SC) grains transcend these fundamental limitations. Through detailed optical spectroscopy, their inherently superior properties are uncovered, with bulk carrier lifetimes reaching 6.6 ns, doping concentrations of around 4.5 × 1017cm−3, and minority‐carrier diffusion lengths approaching 1 µm, as compared to their polycrystalline counterparts having ≈54 ps, ≈9.2 × 1018cm−3, and ≈16 nm, respectively. CsSnI3SCs also exhibit very low surface recombination velocity of ≈2 × 103cm s−1, similar to Pb‐based perovskites. Importantly, these key parameters are comparable to high‐performance p‐type photovoltaic materials (e.g., InP crystals). The findings predict a PCE of ≈23% for optimized CsSnI3SCs solar cells, highlighting their great potential.
more »
« less
Switching Lead for Tin in PbHfO 3 : Noncubic Structure of SnHfO 3 **
Abstract The removal of lead from commercialized perovskite‐oxide‐based piezoceramics has been a recent major topic in materials research owing to legislation in many countries. In this regard, Sn(II)‐perovskite oxides have garnered keen interest due to their predicted large spontaneous electric polarizations and isoelectronic nature for substitution of Pb(II) cations. However, they have not been considered synthesizable owing to their high metastability. Herein, the perovskite lead hafnate, i.e., PbHfO3in space groupPbam, is shown to react with SnClF at a low temperature of 300 °C, and resulting in the first complete Sn(II)‐for‐Pb(II) substitution, i.e. SnHfO3. During this topotactic transformation, a high purity and crystallinity is conserved withPbamsymmetry, as confirmed by X‐ray and electron diffraction, elemental analysis, and119Sn Mössbauer spectroscopy. In situ diffraction shows SnHfO3also possesses reversible phase transformations and is potentially polar between ≈130–200 °C. This so‐called ‘de‐leadification’ is thus shown to represent a highly useful strategy to fully remove lead from perovskite‐oxide‐based piezoceramics and opening the door to new explorations of polar and antipolar Sn(II)‐oxide materials.
more »
« less
- Award ID(s):
- 2004455
- PAR ID:
- 10486775
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 63
- Issue:
- 4
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract All‐inorganic metal halides such as Cs4PbX6and CsPbX3(X = Cl, Br, and I) are attracting global attention owing to their promise in optoelectronic applications. However, the presence of the toxic heavy metal lead (Pb) in these materials is a major concern. Here, a family of nontoxic high‐efficiency blue‐emitting all‐inorganic halides Rb2CuX3(X = Br and Cl) is reported; the compounds exhibit 1D crystal structures featuring anionic2−ribbons separated by Rb+cations. The measured record high photoluminescence quantum yield values range from 64% to 100% for Rb2CuBr3and Rb2CuCl3, respectively. Furthermore, the measured emission linewidths are quite narrow with full width at half maximum values of 54 and 52 nm for Rb2CuBr3and Rb2CuCl3, respectively. Single crystals of Rb2CuCl3demonstrate an anti‐Stokes photoluminescence signal, shown for the first time for Pb‐free metal halides. The discovery of highly efficient narrow blue emitters based on a nontoxic and inexpensive metal copper paves a way for the consideration of low‐cost and environmentally friendly copper halides for practical applications.more » « less
-
Abstract Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.more » « less
-
Abstract Polarimetric infrared (IR) detection bolsters IR thermography by leveraging the polarization of light. Optical anisotropy, i.e., birefringence and dichroism, can be leveraged to achieve polarimetric detection. Recently, giant optical anisotropy is discovered in quasi‐1D narrow‐bandgap hexagonal perovskite sulfides, A1+xTiS3, specifically BaTiS3and Sr9/8TiS3. In these materials, the critical role of atomic‐scale structure modulations in the unconventional electrical, optical, and thermal properties raises the broader question of the nature of other materials that belong to this family. To address this issue, for the first time, high‐quality single crystals of a largely unexplored member of the A1+xTiX3(X = S, Se) family, BaTiSe3are synthesized. Single‐crystal X‐ray diffraction determined the room‐temperature structure with theP31cspace group, which is a superstructure of the earlier reportedP63/mmcstructure. The crystal structure of BaTiSe3features antiparallelc‐axis displacements similar to but of lower symmetry than BaTiS3, verified by the polarization dependent Raman spectroscopy. Fourier transform infrared (FTIR) spectroscopy is used to characterize the optical anisotropy of BaTiSe3, whose refractive index along the ordinary (E⊥c) and extraordinary (E‖c) optical axes is quantitatively determined by combining ellipsometry studies with FTIR. With a giant birefringence Δn∼ 0.9, BaTiSe3emerges as a new candidate for miniaturized birefringent optics for mid‐wave infrared to long‐wave infrared imaging.more » « less
-
Abstract The hafnate perovskites PbHfO3(antiferroelectric) and SrHfO3(“potential” ferroelectric) are studied as epitaxial thin films on SrTiO3(001) substrates with the added opportunity of observing a morphotropic phase boundary (MPB) in the Pb1−xSrxHfO3system. The resulting (240)‐oriented PbHfO3(Pba2) films exhibited antiferroelectric switching with a saturation polarization ≈53 µC cm−2at 1.6 MV cm−1, weak‐field dielectric constant ≈186 at 298 K, and an antiferroelectric‐to‐paraelectric phase transition at ≈518 K. (002)‐oriented SrHfO3films exhibited neither ferroelectric behavior nor evidence of a polarP4mmphase . Instead, the SrHfO3films exhibited a weak‐field dielectric constant ≈25 at 298 K and no signs of a structural transition to a polar phase as a function of temperature (77–623 K) and electric field (–3 to 3 MV cm−1). While the lack of ferroelectric order in SrHfO3removes the potential for MPB, structural and property evolution of the Pb1−xSrxHfO3(0 ≤x < 1) system is explored. Strontium alloying increased the electric‐breakdown strength (EB) and decreased hysteresis loss, thus enhancing the capacitive energy storage density (Ur) and efficiency (η). The composition, Pb0.5Sr0.5HfO3produced the best combination ofEB = 5.12 ± 0.5 MV cm−1,Ur = 77 ± 5 J cm−3, and η = 97 ± 2%, well out‐performing PbHfO3and other antiferroelectric oxides.more » « less
An official website of the United States government
