Abstract Antimicrobial resistance (AMR) is one of the major challenges of the century and should be addressed with a One Health approach. This study aimed to develop a tool that can provide a better understanding of AMR patterns and improve management practices in swine production systems to reduce its spread between farms. We generated similarity networks based on the phenotypic AMR pattern for each farm with information on important bacterial pathogens for swine farming based on the Euclidean distance. We included seven pathogens:Actinobacillus suis,Bordetella bronchiseptica,Escherichia coli,Glaesserella parasuis,Pasteurella multocida,Salmonellaspp., andStreptococcus suis; and up to seventeen antibiotics from ten classes. A threshold criterion was developed to reduce the density of the networks and generate communities based on their AMR profiles. A total of 479 farms were included in the study although not all bacteria information was available on each farm. We observed significant differences in the morphology, number of nodes and characteristics of pathogen networks, as well as in the number of communities and susceptibility profiles of the pathogens to different antimicrobial drugs. The methodology presented here could be a useful tool to improve health management, biosecurity measures and prioritize interventions to reduce AMR spread in swine farming.
more »
« less
Predicting antimicrobial resistance of bacterial pathogens using time series analysis
Antimicrobial resistance (AMR) is arguably one of the major health and economic challenges in our society. A key aspect of tackling AMR is rapid and accurate detection of the emergence and spread of AMR in food animal production, which requires routine AMR surveillance. However, AMR detection can be expensive and time-consuming considering the growth rate of the bacteria and the most commonly used analytical procedures, such as Minimum Inhibitory Concentration (MIC) testing. To mitigate this issue, we utilized machine learning to predict the future AMR burden of bacterial pathogens. We collected pathogen and antimicrobial data from >600 farms in the United States from 2010 to 2021 to generate AMR time series data. Our prediction focused on five bacterial pathogens (Escherichia coli, Streptococcus suis, Salmonella sp., Pasteurella multocida, andBordetella bronchiseptica). We found that Seasonal Auto-Regressive Integrated Moving Average (SARIMA) outperformed five baselines, including Auto-Regressive Moving Average (ARMA) and Auto-Regressive Integrated Moving Average (ARIMA). We hope this study provides valuable tools to predict the AMR burden not only of the pathogens assessed in this study but also of other bacterial pathogens.
more »
« less
- Award ID(s):
- 2134901
- PAR ID:
- 10486962
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Microbiology
- Volume:
- 14
- ISSN:
- 1664-302X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
During the 2022–2023 unprecedented mpox epidemic, near real-time short-term forecasts of the epidemic’s trajectory were essential in intervention implementation and guiding policy. However, as case levels have significantly decreased, evaluating model performance is vital to advancing the field of epidemic forecasting. Using laboratory-confirmed mpox case data from the Centers for Disease Control and Prevention and Our World in Data teams, we generated retrospective sequential weekly forecasts for Brazil, Canada, France, Germany, Spain, the United Kingdom, the United States and at the global scale using an auto-regressive integrated moving average (ARIMA) model, generalized additive model, simple linear regression, Facebook’s Prophet model, as well as the sub-epidemic wave andn-sub-epidemic modelling frameworks. We assessed forecast performance using average mean squared error, mean absolute error, weighted interval scores, 95% prediction interval coverage, skill scores and Winkler scores. Overall, then-sub-epidemic modelling framework outcompeted other models across most locations and forecasting horizons, with the unweighted ensemble model performing best most frequently. Then-sub-epidemic and spatial-wave frameworks considerably improved in average forecasting performance relative to the ARIMA model (greater than 10%) for all performance metrics. Findings further support sub-epidemic frameworks for short-term forecasting epidemics of emerging and re-emerging infectious diseases.more » « less
-
Bollenbach, Tobias (Ed.)Bacterial pathogens pose a major risk to human health, leading to tens of millions of deaths annually and significant global economic losses. While bacterial infections are typically treated with antibiotic regimens, there has been a rapid emergence of antimicrobial resistant (AMR) bacterial strains due to antibiotic overuse. Because of this, treatment of infections with traditional antimicrobials has become increasingly difficult, necessitating the development of innovative approaches for deeply understanding pathogen function. To combat issues presented by broad- spectrum antibiotics, the idea of narrow-spectrum antibiotics has been previously proposed and explored. Rather than interrupting universal bacterial cellular processes, narrow-spectrum antibiotics work by targeting specific functions or essential genes in certain species or subgroups of bacteria. Here, we generate a collection of genome-scale metabolic network reconstructions (GENREs) of pathogens through an automated computational pipeline. We used these GENREs to identify subgroups of pathogens that share unique metabolic phenotypes and determined that pathogen physiological niche plays a role in the development of unique metabolic function. For example, we identified several unique metabolic phenotypes specific to stomach pathogens. We identified essential genes unique to stomach pathogens in silico and a corresponding inhibitory compound for a uniquely essential gene. We then validated our in silico predictions with an in vitro microbial growth assay. We demonstrated that the inhibition of a uniquely essential gene,thyX, inhibited growth of stomach-specific pathogens exclusively, indicating possible physiological location-specific targeting. This pioneering computational approach could lead to the identification of unique metabolic signatures to inform future targeted, physiological location-specific, antimicrobial therapies, reducing the need for broad-spectrum antibiotics.more » « less
-
In this study, a comparative analysis of three satellite precipitation products including Tropical Rainfall Measuring Mission (TRMM-3B43 V7), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR), and Climate Hazards Group InfraRed Precipitation with Station (CHIRPS V2) with ground-measured Indian Meteorological Department (IMD) precipitation data were performed to estimate the meteorological drought in the Bundelkhand region of Central India. The high-resolution CHIRPS data showed the closest agreement with the IMD precipitation and well captured the drought characteristics. The Standardized Precipitation Index (SPI) identified seven major droughts events during the period of 1981 to 2016. Appropriate calibration and validation were performed for drought forecasting using the Auto-Regressive Integrated Moving Average (ARIMA) model. The forecasting result showed a reasonably good agreement with the observed datasets with the one-month lead time. The outcomes of this study have policy level implications for drought monitoring and preparedness in this region.more » « less
-
Streamflow prediction plays a vital role in water resources planning in order to understand the dramatic change of climatic and hydrologic variables over different time scales. In this study, we used machine learning (ML)-based prediction models, including Random Forest Regression (RFR), Long Short-Term Memory (LSTM), Seasonal Auto- Regressive Integrated Moving Average (SARIMA), and Facebook Prophet (PROPHET) to predict 24 months ahead of natural streamflow at the Lees Ferry site located at the bottom part of the Upper Colorado River Basin (UCRB) of the US. Firstly, we used only historic streamflow data to predict 24 months ahead. Secondly, we considered meteorological components such as temperature and precipitation as additional features. We tested the models on a monthly test dataset spanning 6 years, where 24-month predictions were repeated 50 times to ensure the consistency of the results. Moreover, we performed a sensitivity analysis to identify our best-performing model. Later, we analyzed the effects of considering different span window sizes on the quality of predictions made by our best model. Finally, we applied our best-performing model, RFR, on two more rivers in different states in the UCRB to test the model’s generalizability. We evaluated the performance of the predictive models using multiple evaluation measures. The predictions in multivariate time-series models were found to be more accurate, with RMSE less than 0.84 mm per month, R-squared more than 0.8, and MAPE less than 0.25. Therefore, we conclude that the temperature and precipitation of the UCRB increases the accuracy of the predictions. Ultimately, we found that multivariate RFR performs the best among four models and is generalizable to other rivers in the UCRB.more » « less
An official website of the United States government

