Abstract During cyclic loading, localization of intragranular deformation due to crystallographic slip acts as a precursor for crack initiation, often at coherent twin boundaries. A suite of high-resolution synchrotron X-ray characterizations, coupled with a crystal plasticity simulation, was conducted on a polycrystalline nickel-based superalloy microstructure near a parent-twin boundary in order to understand the deformation localization behavior of this critical, 3D microstructural configuration. Dark-field X-ray microscopy was spatially linked to high energy X-ray diffraction microscopy and X-ray diffraction contrast tomography in order to quantify, with cutting-edge resolution, an intragranular misorientation and high elastic strain gradients near a twin boundary. These observations quantify the extreme sub-grain scale stress gradients present in polycrystalline microstructures, which often lead to fatigue failure.
more »
« less
Quantitative analysis of three‐dimensional fatigue crack path selection in Mg alloy WE43 using high‐energy X‐ray diffraction microscopy
Abstract Fatigue short‐cracks in Mg alloys display complex growth behavior due to high plastic anisotropy and crack path dependence on local microstructural features. In this study, the three‐dimensional crystallography of short‐crack paths in Mg alloy WE43 was characterized by mapping near‐field high‐energy X‐ray diffraction microscopy (HEDM) reconstructed grain maps to high‐resolution X‐ray CT reconstructions of the fracture surfaces in the crack initiation and short‐crack growth regions of six ultrasonic fatigue specimens. Crack–grain–boundary intersections were analyzed at 81 locations across the six crack paths. The basal intragranular, non‐basal intragranular, or intergranular character of short‐crack growth following each boundary intersection was correlated to crystallographic and geometric parameters of the trailing and leading grains, three‐dimensional grain boundary plane, and advancing crack front. The results indicate that crack paths are dependent on the combined crystallographic and geometric character of the local microstructure, and crack path prediction can be improved by use of dimensionality reduction on subsets of high‐linear‐correlation microstructural parameters.
more »
« less
- Award ID(s):
- 1629660
- PAR ID:
- 10487096
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Fatigue & Fracture of Engineering Materials & Structures
- ISSN:
- 8756-758X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Microstructurally small fatigue‐crack growth in polycrystalline materials is highly three‐dimensional due to sensitivity to local microstructural features (e.g., grains). One requirement for modeling microstructurally sensitive crack propagation is establishing the criteria that govern crack evolution, including crack deflection. Here, a high‐fidelity finite‐element modeling framework is used to assess the performance and validity of various crack‐growth criteria, including slip‐based metrics (e.g., fatigue‐indicator parameters), as potential criteria for predicting three‐dimensional crack paths in polycrystalline materials. The modeling framework represents cracks as geometrically explicit discontinuities and involves voxel‐based remeshing, mesh‐gradation control, and a crystal‐plasticity constitutive model. The predictions are compared to experimental measurements of WE43 magnesium samples subject to fatigue loading, for which three‐dimensional grain structures and fatigue‐crack surfaces were measured post‐mortem using near‐field high‐energy x‐ray diffraction microscopy and x‐ray computed tomography. Findings from this work are expected to improve the predictive capabilities of simulations involving microstructurally small fatigue‐crack growth in polycrystalline materials.more » « less
-
Abstract The influence of grain size distribution on ductile intergranular crack growth resistance is investigated using full-field microstructure-based finite element calculations and a simpler model based on discrete unit events and graph search. The finite element calculations are carried out for a plane strain slice with planar grains subjected to mode I small-scale yielding conditions. The finite element formulation accounts for finite deformations, and the constitutive relation models the loss of stress carrying capacity due to progressive void nucleation, growth, and coalescence. The discrete unit events are characterized by a set of finite element calculations for crack growth at a single-grain boundary junction. A directed graph of the connectivity of grain boundary junctions and the distances between them is used to create a directed graph in J-resistance space. For a specified grain boundary distribution, this enables crack growth resistance curves to be calculated for all possible crack paths. Crack growth resistance curves are calculated based on various path choice criteria and compared with the results of full-field finite element calculations of the initial boundary value problem. The effect of unimodal and bimodal grain size distributions on intergranular crack growth is considered. It is found that a significant increase in crack growth resistance is obtained if the difference in grain sizes in the bimodal grain size distribution is sufficiently large.more » « less
-
Laser powder bed fusion (LPBF) has been increasingly used in the fabrication of dense metallic structures. However, the corrosion related properties of LPBF alloys, in particular environment-assisted cracking, such as corrosion fatigue properties, are not well understood. In this study, the corrosion and corrosion fatigue characteristics of LPBF 316L stainless steels (SS) in 3.5 wt.% NaCl solution have been investigated using an electrochemical method, high cycle fatigue, and fatigue crack propagation testing. The LPBF 316L SSs demonstrated significantly improved corrosion properties compared to conventionally manufactured 316L, as reflected by the increased pitting and repassivation potentials, as well as retarded crack initiation. However, the printing parameters did not strongly affect the pitting potentials. LPBF samples also demonstrated enhanced capabilities of repassivation during the fatigue crack propagation. The unique microstructural features introduced during the printing process are discussed. The improved corrosion and corrosion fatigue properties are attributed to the presence of columnar/cellular subgrains formed by dislocation networks that serve as high diffusion paths to transport anti-corrosion elements.more » « less
-
Bulk nanostructured metals introduced by severe plastic deformation contain an excess of lattice defects. A nanostructured copper (Cu) processed by a high-pressure torsion technique was examined during in situ heating to investigate microstructural relaxation and quantify the evolution of microstructural parameters using high-energy synchrotron microbeam X-ray diffraction. While general microstructural relaxations, such as recovery, recrystallization, and subsequent grain growth, were observed, the key microstructural parameters, including grain size, microstrain, dislocation density, and thermal expansion coefficient, and their changes at critical temperatures were uniquely described and quantified through diffraction data. Based on this analysis, the stored energies driving thermally activated microstructural changes were estimated for individual defect types — grain boundaries, dislocations, and vacancies — that are expected to significantly influence the relaxation behavior of nanostructured Cu. This study demonstrates the effectiveness of diffraction characterization techniques for gaining a comprehensive understanding of the thermal stability of bulk nanostructured materials.more » « less
An official website of the United States government
