skip to main content


Title: What a SHAME: Smart Assistant Voice Command Fingerprinting Utilizing Deep Learning
It is estimated that by the year 2024, the total number of systems equipped with voice assistant software will exceed 8.4 billion devices globally. While these devices provide convenience to consumers, they suffer from a myriad of security issues. This paper highlights the serious privacy threats exposed by information leakage in a smart assistant's encrypted network traffic metadata. To investigate this issue, we have collected a new dataset composed of dynamic and static commands posed to an Amazon Echo Dot using data collection and cleaning scripts we developed. Furthermore, we propose the Smart Home Assistant Malicious Ensemble model (SHAME) as the new state-of-the-art Voice Command Fingerprinting classifier. When evaluated against several datasets, our attack correctly classifies encrypted voice commands with up to 99.81% accuracy on Google Home traffic and 95.2% accuracy on Amazon Echo Dot traffic. These findings show that security measures must be taken to stop internet service providers, nation-states, and network eavesdroppers from monitoring our intimate conversations.  more » « less
Award ID(s):
1816851
NSF-PAR ID:
10380661
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 20th Workshop on Workshop on Privacy in the Electronic Society
Page Range / eLocation ID:
237 to 243
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Voice assistants are becoming increasingly pervasive due to the convenience and automation they provide through the voice interface. However, such convenience often comes with unforeseen security and privacy risks. For example, encrypted traffic from voice assistants can leak sensitive information about their users' habits and lifestyles. In this paper, we present a taxonomy of fingerprinting voice commands on the most popular voice assistant platforms (Google, Alexa, and Siri). We also provide a deeper understanding of the feasibility of fingerprinting third-party applications and streaming services over the voice interface. Our analysis not only improves the state-of-the-art technique but also studies a more realistic setup for fingerprinting voice activities over encrypted traffic.Our proposed technique considers a passive network eavesdropper observing encrypted traffic from various devices within a home and, therefore, first detects the invocation/activation of voice assistants followed by what specific voice command is issued. Using an end-to-end system design, we show that it is possible to detect when a voice assistant is activated with 99% accuracy and then utilize the subsequent traffic pattern to infer more fine-grained user activities with around 77-80% accuracy. 
    more » « less
  2. Voice controlled interactive smart speakers, such as Google Home, Amazon Echo, and Apple HomePod are becoming commonplace in today's homes. These devices listen continually for the user commands, that are triggered by special keywords, such as "Alexa" and "Hey Siri". Recent research has shown that these devices are vulnerable to attacks through malicious voice commands from nearby devices. The commands can be sent easily during unoccupied periods, so that the user may be unaware of such attacks. We present EchoSafe, a user-friendly sonar-based defense against these attacks. When the user sends a critical command to the smart speaker, EchoSafe sends an audio pulse followed by post processing to determine if the user is present in the room. We can detect the user's presence during critical commands with 93.13% accuracy, and our solution can be extended to defend against other attack scenarios, as well. 
    more » « less
  3. The Amazon Alexa voice assistant provides convenience through automation and control of smart home appliances using voice commands. Amazon allows third-party applications known as skills to run on top of Alexa to further extend Alexa's capability. However, as multiple skills can share the same invocation phrase and request access to sensitive user data, growing security and privacy concerns surround third-party skills. In this paper, we study the availability and effectiveness of existing security indicators or a lack thereof to help users properly comprehend the risk of interacting with different types of skills. We conduct an interactive user study (inviting active users of Amazon Alexa) where participants listen to and interact with real-world skills using the official Alexa app. We find that most participants fail to identify the skill developer correctly (i.e., they assume Amazon also develops the third-party skills) and cannot correctly determine which skills will be automatically activated through the voice interface. We also propose and evaluate a few voice-based skill type indicators, showcasing how users would benefit from such voice-based indicators. 
    more » « less
  4. Voice assistants embodied in smart speakers (e.g., Amazon Echo, Google Home) enable voice-based interaction that does not necessarily rely on expertise with mobile or desktop computing. Hence, these voice assistants offer new opportunities to different populations, including individuals who are not interested or able to use traditional computing devices such as computers and smartphones. To understand how older adults who use technology infrequently perceive and use these voice assistants, we conducted a 3-week field deployment of the Amazon Echo Dot in the homes of seven older adults. While some types of usage dropped over the 3-week period (e.g., playing music), we observed consistent usage for finding online information. Given that much of this information was health-related, this finding emphasizes the need to revisit concerns about credibility of information with this new interaction medium. Although features to support memory (e.g., setting timers, reminders) were initially perceived as useful, the actual usage was unexpectedly low due to reliability concerns. We discuss how these findings apply to other user groups along with design implications and recommendations for future work on voice-user interfaces. 
    more » « less
  5. Voice assistants embodied in smart speakers (e.g., Amazon Echo, Google Home) enable conversational interaction that does not necessarily rely on expertise with mobile or desktop computing. Hence, these voice assistants offer new opportunities to different populations, including individuals who are not interested or able to use traditional computing devices such as computers and smartphones. To understand how older adults who use technology infrequently perceive and use these voice assistants, we conducted a three-week field deployment of the Amazon Echo Dot in the homes of seven older adults. Participants described increased confidence using digital technology and found the conversational voice interfaces easy to use. While some types of usage dropped over the three-week period (e.g., playing music), we observed consistent usage for finding online information. Given that much of this information was health-related, this finding emphasizes the need to revisit concerns about credibility of information with this new interaction medium. Although features to support memory (e.g., setting timers, reminders) were initially perceived as useful, the actual usage was unexpectedly low due to reliability concerns. We discuss how these findings apply to other user groups along with design implications and recommendations for future work on voice user interfaces. 
    more » « less