skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on January 22, 2025

Title: Design principles for inflammasome inhibition by pyrin-only-proteins

Inflammasomes are filamentous signaling platforms essential for host defense against various intracellular calamities such as pathogen invasion and genotoxic stresses. However, dysregulated inflammasomes cause an array of human diseases including autoinflammatory disorders and cancer. It was recently identified that endogenous pyrin-only-proteins (POPs) regulate inflammasomes by directly inhibiting their filament assembly. Here, by combining Rosetta in silico, in vitro, and in cellulo methods, we investigate the target specificity and inhibition mechanisms of POPs. We find here that POP1 is ineffective in directly inhibiting the central inflammasome adaptor ASC. Instead, POP1 acts as a decoy and targets the assembly of upstream receptor pyrin-domain (PYD) filaments such as those of AIM2, IFI16, NLRP3, and NLRP6. Moreover, not only does POP2 directly suppress the nucleation of ASC, but it can also inhibit the elongation of receptor filaments. In addition to inhibiting the elongation of AIM2 and NLRP6 filaments, POP3 potently suppresses the nucleation of ASC. Our Rosetta analyses and biochemical experiments consistently suggest that a combination of favorable and unfavorable interactions between POPs and PYDs is necessary for effective recognition and inhibition. Together, we reveal the intrinsic target redundancy of POPs and their inhibitory mechanisms.

 
more » « less
Award ID(s):
1845003
PAR ID:
10487319
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
eLife
Date Published:
Journal Name:
eLife
Volume:
13
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Inflammasomes are filamentous signaling platforms integral to innate immunity. Currently, little is known about how these structurally similar filaments recognize and distinguish one another. A cryo-EM structure of the AIM2PYDfilament reveals that the architecture of the upstream filament is essentially identical to that of the adaptor ASCPYDfilament. In silico simulations using Rosetta and molecular dynamics followed by biochemical and cellular experiments consistently demonstrate that individual filaments assemble bidirectionally. By contrast, the recognition between AIM2 and ASC requires at least one to be oligomeric and occurs in a head-to-tail manner. Using in silico mutagenesis as a guide, we also identify specific axial and lateral interfaces that dictate the recognition and distinction between AIM2 and ASC filaments. Together, the results here provide a robust framework for delineating the signaling specificity and order of inflammasomes.

     
    more » « less
  2. Abstract

    Upon sensing cytosolic- and/or viral double-stranded (ds)DNA, absent-in-melanoma-2 (AIM2)-like-receptors (ALRs) assemble into filamentous signaling platforms to initiate inflammatory responses. The versatile yet critical roles of ALRs in host innate defense are increasingly appreciated; however, the mechanisms by which AIM2 and its related IFI16 specifically recognize dsDNA over other nucleic acids remain poorly understood (i.e. single-stranded (ss)DNA, dsRNA, ssRNA and DNA:RNA hybrid). Here, we find that although AIM2 can interact with various nucleic acids, it preferentially binds to and assembles filaments faster on dsDNA in a duplex length-dependent manner. Moreover, AIM2 oligomers assembled on nucleic acids other than dsDNA not only display less ordered filamentous structures, but also fail to induce the polymerization of downstream ASC. Likewise, although showing broader nucleic acid selectivity than AIM2, IFI16 binds to and oligomerizes most readily on dsDNA in a duplex length-dependent manner. Nevertheless, IFI16 fails to form filaments on single-stranded nucleic acids and does not accelerate the polymerization of ASC regardless of bound nucleic acids. Together, we reveal that filament assembly is integral to nucleic acid distinction by ALRs.

     
    more » « less
  3. Abstract

    Pathogenic dsDNA prompts AIM2 assembly leading to the formation of the inflammasome, a multimeric complex that triggers the inflammatory response. The recognition of foreign dsDNA involves AIM2 self-assembly concomitant with dsDNA binding. However, we lack mechanistic and kinetic information on the formation and propagation of the assembly, which can shed light on innate immunity’s time response and specificity. Combining optical traps and confocal fluorescence microscopy, we determine here the association and dissociation rates of the AIM2-DNA complex at the single molecule level. We identify distinct mechanisms for oligomer growth via the binding of incoming AIM2 molecules to adjacent dsDNA or direct interaction with bound AIM2 assemblies, resembling primary and secondary nucleation. Through these mechanisms, the size of AIM2 oligomers can increase fourfold in seconds. Finally, our data indicate that single AIM2 molecules do not diffuse/scan along the DNA, suggesting that oligomerization depends on stochastic encounters with DNA and/or DNA-bound AIM2.

     
    more » « less
  4. Abstract

    This article presents assays that allow induction and measurement of activation of different inflammasomes in mouse macrophages, human peripheral blood mononuclear cell (PBMC) cultures, and mouse peritonitis and endotoxic shock models. Basic Protocol 1 describes how to prime the inflammasome in mouse macrophages with different Toll‐like receptor agonists and TNF‐α; how to induce NLRP1, NLRP3, NLRC4, and AIM2 inflammasome activation by their corresponding stimuli; and how to measure inflammasome activation‐mediated maturation of interleukin (IL)‐1β and IL‐18 and pyroptosis. Since the well‐established agonists for NLRP1 are inconsistent between mice and humans, Basic Protocol 2 describes how to activate the NLRP1 inflammasome in human PBMCs. Basic Protocol 3 describes how to purify, crosslink, and detect the apoptosis‐associated speck‐like protein containing a CARD (ASC) pyroptosome. Formation of the ASC pyroptosome is a signature of inflammasome activation. A limitation of ASC pyroptosome detection is the requirement of a relatively large cell number. Alternate Protocol 1 is provided to stain ASC pyroptosomes using an anti‐ASC antibody and to measure ASC specks by fluorescence microscopy in a single cell. Intraperitoneal injection of lipopolysaccharides (LPS) and inflammasome agonists will induce peritonitis, which is seen as an elevation of IL‐1β and other proinflammatory cytokines and an infiltration of neutrophils and inflammatory monocytes. Basic Protocol 4 describes how to induce NLRP3 inflammasome activation and peritonitis by priming mice with LPS and subsequently challenging them with monosodium urate (MSU). The method for measuring cytokines in serum and through peritoneal lavage is also described. Finally, Alternate Protocol 2 describes how to induce noncanonical NLRP3 inflammasome activation by high‐dose LPS challenge in a sepsis model. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Priming and activation of inflammasomes in mouse macrophages

    Basic Protocol 2: Activation of human NLRP1 inflammasome by DPP8/9 inhibitor talabostat

    Basic Protocol 3: Purification and detection of ASC pyroptosome

    Alternate Protocol 1: Detection of ASC speck by immunofluorescence staining

    Basic Protocol 4: Activation of canonical NLRP3 inflammasome in mice by intraperitoneal delivery of MSU crystals

    Alternate Protocol 2: Activation of noncanonical NLRP3 inflammasome in mice by intraperitoneal delivery of LPS

     
    more » « less
  5. Abstract

    AIM2 is a cytosolic innate immune receptor which recognizes double‐stranded DNA (dsDNA) released during cellular perturbation and pathogenic assault. AIM2 recognition of dsDNA leads to the assembly of a large multiprotein oligomeric complex termed the inflammasome. This inflammasome assembly leads to the secretion of bioactive interleukin‐1β (IL‐1β) and IL‐18 and induction of an inflammatory form of cell death called pyroptosis. Sensing of dsDNA by AIM2 in the cytosol is crucial to mediate protection against the invading pathogens including bacteria, virus, fungi and parasites. AIM2 also responds to dsDNA released from damaged host cells, resulting in the secretion of the effector cytokines thereby driving the progression of sterile inflammatory diseases such as skin disease, neuronal disease, chronic kidney disease, cardiovascular disease and diabetes. Additionally, the protection mediated by AIM2 in the development of colorectal cancer depends on its ability to regulate epithelial cell proliferation and gut microbiota in maintaining intestinal homeostasis independently of the effector cytokines. In this review, we will highlight the recent progress on the role of the AIM2 inflammasome as a guardian of cellular integrity in modulating chronic inflammatory diseases, cancer and infection.

     
    more » « less