skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High levels of alpha-gal with large variation in the salivary glands of lone star ticks fed on human blood
Abstract Tick bites, associated with the secretion of tick saliva containing the xenoglycan galactose-alpha-1, 3-galactose (alpha-gal or aGal), are recognized as the causal factors of alpha-Gal syndrome (AGS; or red meat allergy) in humans. AGS occurs after the increased production of IgE antibodies against aGal, which is found in most mammalian cells, except for the Old World monkey and humans. The aGal sensitization event has been linked to an initial tick bite, followed by consumption of red meat containing the aGal glycan, which triggers the onset of the allergic response resulting in urticaria, anaphylaxis, or even death. In North America, the lone star tick,Amblyomma americanum, has been identified as the main culprit for AGS. However, only a subset of the human population exposed to lone star tick bites develops AGS. This suggests the presence of unidentified variables associated with the sensitization event. To evaluate the quantitative variations of the aGal in ticks, we evaluated the differences in aGal levels in different strains ofA. americanumticks partially fed on different blood sources using an artificial feeding system and animal hosts. We found significantly higher aGal levels in the female ticks fed on human blood than those fed on the blood of other mammals with large variations among different tick populations and individuals. We propose that host-specific genetic components in theA. americanumticks are involved in the production of high aGal epitope in the tick saliva, which provides a part of the explanation for the variables associated with the AGS sensitization event of the tick bite.  more » « less
Award ID(s):
1920946
PAR ID:
10487322
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stevenson, Brian (Ed.)
    Ticks are the most important vectors of zoonotic disease-causing pathogens in North America and Europe. Many tick species are expanding their geographic range. Although correlational evidence suggests that climate change is driving the range expansion of ticks, experimental evidence is necessary to develop a mechanistic understanding of ticks’ response to a range of climatic conditions. Previous experiments used simulated microclimates, but these protocols require hazardous salts or expensive laboratory equipment to manipulate humidity. We developed a novel, safe, stable, convenient, and economical method to isolate individual ticks and manipulate their microclimates. The protocol involves placing individual ticks in plastic tubes, and placing six tubes along with a commercial two-way humidity control pack in an airtight container. We successfully used this method to investigate how humidity affects survival and host-seeking (questing) behavior of three tick species: the lone star tick ( Amblyomma americanum ), American dog tick ( Dermacentor variabilis ), and black-legged tick ( Ixodes scapularis ). We placed 72 adult females of each species individually into plastic tubes and separated them into three experimental relative humidity (RH) treatments representing distinct climates: 32% RH, 58% RH, and 84% RH. We assessed the survival and questing behavior of each tick for 30 days. In all three species, survivorship significantly declined in drier conditions. Questing height was negatively associated with RH in Amblyomma , positively associated with RH in Dermacentor , and not associated with RH in Ixodes . The frequency of questing behavior increased significantly with drier conditions for Dermacentor but not for Amblyomma or Ixodes . This report demonstrates an effective method for assessing the viability and host-seeking behavior of tick vectors of zoonotic diseases under different climatic conditions. 
    more » « less
  2. Becker, Daniel (Ed.)
    The states of Kansas and Oklahoma, in the central Great Plains, lie at the western periphery of the geographic distributions of several tick species. As the focus of most research on ticks and tick-borne diseases has been on Lyme disease which commonly occurs in areas to the north and east, the ticks of this region have seen little research attention. Here, we report on the phenology and activity patterns shown by tick species observed at 10 sites across the two states and explore factors associated with abundance of all and life specific individuals of the dominant species. Ticks were collected in 2020–2022 using dragging, flagging and carbon-dioxide trapping techniques, designed to detect questing ticks. The dominant species wasA.americanum(24098, 97%) followed byDermacentor variabilis(370, 2%),D.albipictus(271, 1%),Ixodes scapularis(91, <1%)and A.maculatum(38, <1%).Amblyomma americanum,A.maculatum and D.variabiliswere active in Spring and Summer, whileD.albipictus and I.scapulariswere active in Fall and Winter. Factors associated with numbers of individuals ofA.americanumincluded day of year, habitat, and latitude. Similar associations were observed when abundance was examined by life-stage. Overall, the picture is one of broadly distributed tick species that shows seasonal limitations in the timing of their questing activity. 
    more » « less
  3. Environmental dimensions, such as temperature, precipitation, humidity, and vegetation type, influence the activity, survival, and geographic distribution of tick species. Ticks are vectors of various pathogens that cause disease in humans, andIxodes scapularisandAmblyomma americanumare among the tick species that transmit pathogens to humans across the central and eastern United States. Although their potential geographic distributions have been assessed broadlyviaecological niche modeling, no comprehensive study has compared ecological niche signals between ticks and tick-borne pathogens. We took advantage of National Ecological Observatory Network (NEON) data for these two tick species and associated bacteria pathogens across North America. We used two novel statistical tests that consider sampling and absence data explicitly to perform these explorations: a univariate analysis based on randomization and resampling, and a permutational multivariate analysis of variance. Based on univariate analyses, inAmblyomma americanum, three pathogens(Borrelia lonestari,Ehrlichia chaffeensis, andE. ewingii) were tested; pathogens showed nonrandom distribution in at least one environmental dimension. Based on the PERMANOVA test, the null hypothesis that the environmental position and variation of pathogen-positive samples are equivalent to those ofA. americanumcould not be rejected for any of the pathogens, except for the pathogenE. ewingiiin maximum and minimum vapor pressure and minimum temperature. ForIxodes scapularis,six pathogens (A. phagocytophilum,Babesia microti,Borrelia burgdorferisensu lato,B. mayonii,B. miyamotoi, andEhrlichia muris-like) were tested; onlyB. miyamotoiwas not distinct from null expectations in all environmental dimensions, based on univariate tests. In the PERMANOVA analyses, the pathogens departed from null expectations forB. microtiandB. burgdorferisensu lato, with smaller niches inB. microti, and larger niches inB. burgdorferisensu lato, than the vector. More generally, this study shows the value of large-scale data resources with consistent sampling methods, and known absences of key pathogens in particular samples, for answering public health questions, such as the relationship of presence and absence of pathogens in their hosts respect to environmental conditions. 
    more » « less
  4. Abstract Background The incidence of tick-borne disease has increased dramatically in recent decades, with urban areas increasingly recognized as high-risk environments for exposure to infected ticks. Green spaces may play a key role in facilitating the invasion of ticks, hosts and pathogens into residential areas, particularly where they connect residential yards with larger natural areas (e.g. parks). However, the factors mediating tick distribution across heterogeneous urban landscapes remain poorly characterized. Methods Using generalized linear models in a multimodel inference framework, we determined the residential yard- and local landscape-level features associated with the presence of three tick species of current and growing public health importance in residential yards across Staten Island, a borough of New York City, in the state of New York, USA. Results The amount and configuration of canopy cover immediately surrounding residential yards was found to strongly predict the presence of Ixodes scapularis and Amblyomma americanum , but not that of Haemaphysalis longicornis . Within yards, we found a protective effect of fencing against I. scapularis and A. americanum, but not against H. longicornis . For all species, the presence of log and brush piles strongly increased the odds of finding ticks in yards. Conclusions The results highlight a considerable risk of tick exposure in residential yards in Staten Island and identify both yard- and landscape-level features associated with their distribution. In particular, the significance of log and brush piles for all three species supports recommendations for yard management as a means of reducing contact with ticks. Graphical Abstract 
    more » « less
  5. null (Ed.)
    Abstract Although currently exotic to New Zealand, the potential geographic distribution of Amblyomma americanum (L.), the lone star tick, was modelled using maximum entropy (MaxEnt). The MaxEnt model was calibrated across the native range of A. americanum in North America using present-day climatic conditions and occurrence data from museum collections. The resulting model was then projected onto New Zealand using both present-day and future climates modelled under two greenhouse gas emission scenarios, representative concentration pathways (RCP) 4.5 (low) and RCP 8.5 (high). Three sets of WorldClim bioclimatic variables were chosen using the jackknife method and tested in MaxEnt using different combinations of model feature class functions and regularization multiplier values. The preferred model was selected based on partial receiver operating characteristic tests, the omission rate and the lowest Akaike information criterion. The final model had four bioclimatic variables, Annual Mean Temperature (BIO 1 ), Annual Precipitation (BIO 12 ), Precipitation Seasonality (BIO 15 ) and Precipitation of Driest Quarter (BIO 17 ), and the projected New Zealand distribution was broadly similar to that of Haemaphysalis longicornis Neumann, New Zealand’s only livestock tick, but with a more extensive predicted suitability. The climate change predictions for the year 2050 under both low and high RCP scenarios projected only moderate increases in habitat suitability along the mountain valleys in the South Island. In conclusion, this analysis shows that given the opportunity and license A. americanum could and would successfully establish in New Zealand and could provide another vector for theileriosis organisms. 
    more » « less