Abstract As one of the most prominent weather systems over the Indian subcontinent, the Indian summer monsoon low pressure systems (MLPSs) have been studied extensively over the past decades. However, the processes that govern the growth of the MLPSs are not well understood. To better understand these processes, we created an MLPS index using bandpass-filtered precipitation data. Lag regression maps and vertical cross sections are used to document the distribution of moisture, moist static energy (MSE), geopotential, and horizontal and vertical motions in these systems. It is shown that moisture governs the distribution of MSE and is in phase with precipitation, vertical motion, and geopotential during the MLPS cycle. Examination of the MSE budget reveals that longwave radiative heating maintains the MSE anomalies against dissipation from vertical MSE advection. These processes nearly cancel one another, and it is variations in horizontal MSE advection that are found to explain the growth and decay of the MSE anomalies. Horizontal MSE advection contributes to the growth of the MSE anomalies in MLPSs prior to the system attaining a maximum amplitude and contributes to decay thereafter. The horizontal MSE advection is largely due to meridional advection of mean state MSE by the anomalous winds, suggesting that the MSE anomalies undergo a moisture–vortex instability (MVI)-like growth. In contrast, perturbation kinetic energy (PKE) is generated through barotropic conversion. The structure, propagation, and energetics of the regressed MLPSs are consistent with both barotropic and moisture–vortex growth. 
                        more » 
                        « less   
                    
                            
                            On the Accuracy of the Moist Static Energy Budget When Applied to Large-Scale Tropical Motions
                        
                    
    
            Abstract The moist static energy (MSE) budget is widely used to understand moist atmospheric thermodynamics. However, the budget is not exact, and the accuracy of the approximations that yield it has not been examined rigorously in the context of large-scale tropical motions (horizontal scales ≥ 1000 km). A scale analysis shows that these approximations are most accurate in systems whose latent energy anomalies are considerably larger than the geopotential and kinetic energy anomalies. This condition is satisfied in systems that exhibit phase speeds and horizontal winds on the order of 10 m s−1or less. Results from a power spectral analysis of data from the DYNAMO field campaign and ERA5 qualitatively agree with the scaling, although they indicate that the neglected terms are smaller than what the scaling suggests. A linear regression analysis of the MJO events that occurred during DYNAMO yields results that support these findings. It is suggested that the MSE budget is accurate in the tropics because motions within these latitudes are constrained to exhibit small fluctuations in geopotential and kinetic energy as a result of weak temperature gradient (WTG) balance. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2236433
- PAR ID:
- 10487338
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 80
- Issue:
- 10
- ISSN:
- 0022-4928
- Page Range / eLocation ID:
- 2365 to 2376
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Convectively coupled waves (CCWs) over the Western Hemisphere are classified based on their governing thermodynamics. It is found that only the tropical depressions (TDs; TD waves) satisfy the criteria necessary to be considered a moisture mode, as in the Rossby-like wave found in an earlier study. In this wave, water vapor fluctuations play a much greater role in the thermodynamics than temperature fluctuations. Only in the eastward-propagating inertio-gravity (EIG) wave does temperature govern the thermodynamics. Temperature and moisture play comparable roles in all the other waves, including the Madden–Julian oscillation over the Western Hemisphere (MJO-W). The moist static energy (MSE) budget of CCWs is investigated by analyzing ERA5 data and data from the 2014/15 observations and modeling of the Green Ocean Amazon (GoAmazon 2014/15) field campaign. Results reveal that vertical advection of MSE acts as a primary driver of the propagation of column MSE in westward inertio-gravity (WIG) wave, Kelvin wave, and MJO-W, while horizontal advection plays a central role in the mixed Rossby gravity (MRG) and TD wave. Results also suggest that cloud radiative heating and the horizontal MSE advection govern the maintenance of most of the CCWs. Major disagreements are found between ERA5 and GoAmazon. In GoAmazon, convection is more tightly coupled to variations in column MSE, and vertical MSE advection plays a more prominent role in the MSE tendency. These results along with substantial budget residuals found in ERA5 data suggest that CCWs over the tropical Western Hemisphere are not represented adequately in the reanalysis. Significance StatementIn comparison to other regions of the globe, the weather systems that affect precipitation in the tropical Western Hemisphere have received little attention. In this study, we investigate the structure, propagation, and thermodynamics of convectively coupled waves that impact precipitation in this region. We found that slowly evolving tropical systems are “moisture modes,” i.e., moving regions of high humidity and precipitation that are maintained by interactions between clouds and radiation. The faster waves are systems that exhibit relatively larger fluctuations in temperature. Vertical motions are more important for the movement of rainfall in these waves. Last, we found that reanalysis and observations disagree over the importance of different processes in the waves that occurred over the Amazon region, hinting at potential deficiencies on how the reanalysis represents clouds in this region.more » « less
- 
            Abstract Observations have shown that tropical convection is influenced by fluctuations in temperature and moisture in the lower free troposphere (LFT; 600–850 hPa), as well as moist enthalpy (ME) fluctuations beneath the 850 hPa level, referred to as the deep boundary layer (DBL; 850–1000 hPa). A framework is developed that consolidates these three quantities within the context of the buoyancy of an entraining plume. A “plume buoyancy equation” is derived based on a relaxed version of the weak temperature gradient (WTG) approximation. Analysis of this equation using quantities derived from the Dynamics of the Madden–Julian Oscillation (DYNAMO) sounding array data reveals that processes occurring within the DBL and the LFT contribute nearly equally to the evolution of plume buoyancy, indicating that processes that occur in both layers are critical to the evolution of tropical convection. Adiabatic motions play an important role in the evolution of buoyancy both at the daily and longer time scales and are comparable in magnitude to horizontal moisture advection and vertical moist static energy advection by convection. The plume buoyancy equation may explain convective coupling at short time scales in both temperature and moisture fluctuations and can be used to complement the commonly used moist static energy budget, which emphasizes the slower evolution of the convective envelope in tropical motion systems.more » « less
- 
            Abstract Previous observational and modeling studies have suggested that moisture plays a dominant role in Madden–Julian oscillation (MJO) evolution. Using a realistic MJO simulation by incorporating the role of mesoscale stratiform heating in the Zhang–McFarlane deep convection scheme in the National Center for Atmospheric Research Community Atmosphere Model, version 5.3 (NCAR CAM5.3), this study investigates the factors responsible for the improved MJO simulation by examining moisture variations during different MJO phases. The results of column moist static energy (MSE) and moisture budgets show that during the suppressed phases of MJO, vertical advection acts to increase MSE anomalies for the development of deep convection while radiative heating and surface heat flux decrease MSE. The opposite holds true at the MJO mature phase. However, their roles largely cancel each other, leaving horizontal advection to play a major role in the low-level MSE increase during the suppressed phase of the MJO and MSE decrease after the MJO mature phase. A further analysis combining moisture and temperature budget equations is performed to demonstrate the effects of vertical advection and cloud processes within the column at each level. The vertical profiles of column-confined moisture tendency show that large-scale vertical advection induced by latent heat release and evaporation within shallow convective clouds is also important to the lower-tropospheric moistening during suppressed phases. This confirms the role of shallow convection in low-level moistening ahead of MJO deep convection. Radiative heating is vital across all MJO phases, and its warming effects keep the column humidity anomaly maintained in mature phases. None of these features are reproduced by the standard CAM5.3.more » « less
- 
            Abstract Interaction between the atmosphere and ocean in sea ice–covered regions is largely concentrated in leads, which are long, narrow openings between sea ice floes. Refreezing and brine rejection in these leads inject salt that plays a key role in maintaining the polar halocline. The injected salt forms dense plumes that subsequently become baroclinically unstable, producing submesoscale eddies that facilitate horizontal spreading of the salt anomalies. However, it remains unclear which properties of the stratification and leads most strongly influence the vertical and horizontal spreading of lead-input salt anomalies. In this study, the spread of lead-injected buoyancy anomalies by mixed layer and eddy processes are investigated using a suite of idealized numerical simulations. The simulations are complemented by dynamical theories that predict the plume convection depth, horizontal eddy transfer coefficient, and eddy kinetic energy as functions of the ambient stratification and lead properties. It is shown that vertical penetration of buoyancy anomalies is accurately predicted by a mixed layer temperature and salinity budget until the onset of baroclinic instability (~3 days). Subsequently, these buoyancy anomalies are spread horizontally by eddies. The horizontal eddy diffusivity is accurately predicted by a mixing-length scaling, with a velocity scale set by the potential energy released by the sinking salt plume and a length scale set by the deformation radius of the ambient stratification. These findings indicate that the intermittent opening of leads can efficiently populate the polar halocline with submesoscale coherent vortices with diameters of ~10 km, and they provide a step toward parameterizing their effect on the horizontal redistribution of salinity anomalies.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    