skip to main content


Title: The Pacific Northwest Heat Wave of 25–30 June 2021: Synoptic/Mesoscale Conditions and Climate Perspective
Abstract

An unprecedented heat wave occurred over the Pacific Northwest and southwest Canada on 25–30 June 2021, resulting in all-time temperature records that greatly exceeded previous record maximum temperatures. The impacts were substantial, including several hundred deaths, thousands of hospitalizations, a major wildfire in Lytton, British Columbia, Canada, and severe damage to regional vegetation. Several factors came together to produce this extreme event: a record-breaking midtropospheric ridge over British Columbia in the optimal location, record-breaking midtropospheric temperatures, strong subsidence in the lower atmosphere, low-level easterly flow that produced downslope warming on regional terrain and the removal of cooler marine air, an approaching low-level trough that enhanced downslope flow, the occurrence at a time of maximum insolation, and drier-than-normal soil moisture. It is shown that all-time-record temperatures have not become more frequent and that annual high temperatures only increased at the rate of baseline global warming. Although anthropogenic warming may have contributed as much as 1°C to the event, there is little evidence of further amplification from increasing greenhouse gases. Weather forecasts were excellent for this event, with highly accurate predictions of the extreme temperatures.

Significance Statement

This paper describes the atmospheric evolution that produced an extreme heat wave over the Pacific Northwest during June 2021 and puts this event into historical perspective.

 
more » « less
NSF-PAR ID:
10487413
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Weather and Forecasting
Volume:
39
Issue:
2
ISSN:
0882-8156
Format(s):
Medium: X Size: p. 275-291
Size(s):
["p. 275-291"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During late June 2021, a record-breaking heatwave impacted western North America, with all-time high temperatures reported across Washington, Oregon, British Columbia, and Alberta. The heatwave was forced by a highly anomalous upper-level ridge, strong synoptic-scale subsidence, and downslope flow resulting in lower-tropospheric adiabatic warming. This study examines the impact of antecedent soil moisture on this extreme heat event. During the cool season of 2020/21, precipitation over the Pacific Northwest was above or near normal, followed by a dry spring that desiccated soils to 50%–75% of normal moisture content by early June. Low surface soil moisture affects the surface energy balance by altering the partitioning between sensible and latent heat fluxes, resulting in warmer temperatures. Using numerical model simulations of the heatwave, this study demonstrates that surface air temperatures were warmed by an average of 0.48°C as a result of dry soil moisture conditions, compared to a high-temperature anomaly of 10°–20°C during the event. Air temperatures over eastern Washington and southern British Columbia were most sensitive to soil moisture anomalies, with 0000 UTC temperature anomalies ranging from 1.2° to 2.2°C. Trajectory analysis indicated that rapid subsidence of elevated parcels prevented air parcels from being affected by surface heat fluxes over a prolonged period of time, resulting in a relatively small temperature sensitivity to soil moisture. Changes to soil moisture also altered regional pressure, low-level wind, and geopotential heights, as well as modified the marine air intrusion along the Pacific coast of Washington and Oregon. Significance Statement The record-breaking western North American heatwave of late June 2021 was preceded by below-normal soil moisture over the region. This study evaluates the role of soil moisture on the 2021 heatwave, demonstrating that the anomalous temperatures during this extreme event were not significantly increased by below-normal soil moisture. 
    more » « less
  2. Abstract During the last week of June 2021, the Pacific Northwest region of North America experienced a record-breaking heatwave of historic proportions. All-time high temperature records were shattered, often by several degrees, across many locations, with Canada setting a new national record, the state of Washington setting a new record, and the state of Oregon tying its previous record. Here we diagnose key meteorology that contributed to this heatwave. The event was associated with a highly anomalous midtropospheric ridge, with peak 500-hPa geopotential height anomalies centered over central British Columbia. This ridge developed over several days as part of a large-scale wave train. Back trajectory analysis indicates that synoptic-scale subsidence and associated adiabatic warming played a key role in enhancing the magnitude of the heat to the south of the ridge peak, while diabatic heating was dominant closer to the ridge center. Easterly/offshore flow inhibited marine cooling and contributed additional downslope warming along the western portions of the region. A notable surface thermally induced trough was evident throughout the event over western Oregon and Washington. An eastward shift of the thermal trough, following the eastward migration of the 500-hPa ridge, allowed an inland surge of cooler marine air and dramatic 24-h cooling, especially along the western periphery of the region. Large-scale horizontal warm-air advection played a minimal role. When compared with past highly amplified ridges over the region, this event was characterized by much higher 500-hPa geopotential heights, a stronger thermal trough, and stronger offshore flow. 
    more » « less
  3. Abstract

    Extreme summer temperatures are increasingly common across the Northern Hemisphere and inflict severe socioeconomic and biological consequences. In summer 2021, the Pacific Northwest region of North America (PNW) experienced a 2-week-long extreme heatwave, which contributed to record-breaking summer temperatures. Here, we use tree-ring records to show that summer temperatures in 2021, as well as the rate of summertime warming during the last several decades, are unprecedented within the context of the last millennium for the PNW. In the absence of committed efforts to curtail anthropogenic emissions below intermediate levels (SSP2–4.5), climate model projections indicate a rapidly increasing risk of the PNW regularly experiencing 2021-like extreme summer temperatures, with a 50% chance of yearly occurrence by 2050. The 2021 summer temperatures experienced across the PNW provide a benchmark and impetus for communities in historically temperate climates to account for extreme heat-related impacts in climate change adaptation strategies.

     
    more » « less
  4. Heat waves are becoming more common and intense with global climate change, which requires deploying resilience strategies of governments to prepare for long-term trends of higher temperatures and carefully plan emergency responses for such extreme heat events. The British Columbia province of Canada is one of the regions severely affected by extreme climatic events in 2021, which resulted in several deaths and put hundreds of thousands of people scrambling for relief. This study examines the public reactions to one of these extreme climatic events, the 2021 Pasific Northwest heatwave, in a non-emergency service request platform to uncover the types of municipal service needs during severe climatic disasters. City of Vancouver 311 system data is used to identify the impact of heatwave on the frequency and types of service needs and examine the significance of the relationship between climatic conditions and the non-emergency service volumes. 
    more » « less
  5. Abstract

    The 2021 Pacific Northwest heatwave featured record‐smashing high temperatures, raising questions about whether extremes are changing faster than the mean, and challenging our ability to estimate the probability of the event. Here, we identify and draw on the strong relationship between the climatological higher‐order statistics of temperature (skewness and kurtosis) and the magnitude of extreme events to quantify the likelihood of comparable events using a large climate model ensemble (Community Earth System Model version 2 Large Ensemble [CESM2‐LE]). In general, CESM2 can simulate temperature anomalies as extreme as those observed in 2021, but they are rare: temperature anomalies that exceed 4.5σoccur with an approximate frequency of one in a hundred thousand years. The historical data does not indicate that the upper tail of temperature is warming faster than the mean; however, future projections for locations with similar climatological moments to the Pacific Northwest do show significant positive trends in the probability of the most extreme events.

     
    more » « less