skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Meta-analysis data of skeletal muscle slow fiber content across mammalian species
Herein, the dataset generated for Queeno et al. [1] is presented and described. Mammalian skeletal muscle slow (MyHC-I) fiber composition data was collated from 269 eligible studies identified via a systematic literature search and meta-analysis, following a structure similar to PRISMA [2]. Academic search systems were queried with terms relating to mammalian skeletal muscle fiber content and reference lists of selected articles were thoroughly investigated for additional studies. Eligible studies were those that provided skeletal muscle fiber composition data from mammalian species that were not subjected to experimental manipulations. Taxonomic information, sex, age, number of individuals sampled, average body mass (kg), average slow fiber content (%) of each skeletal muscle under investigation and fiber-typing methodology were collated from eligible studies when available. Muscle fiber composition data was collected from more than 200 skeletal muscles across 174 mammalian species, which will be of value to those interested in muscle physiology, interspecific muscle comparisons, and connections between muscle physiology, taxonomy, body mass, ecomorphology and locomotor strategy (among others).  more » « less
Award ID(s):
1945809 2018436
PAR ID:
10487440
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Data in Brief
Volume:
50
Issue:
C
ISSN:
2352-3409
Page Range / eLocation ID:
109520
Subject(s) / Keyword(s):
Muscle fiber composition Myosin heavy chain I MyHC I Slow-twitch Fiber typing Interspecific muscle physiology comparison
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Skeletal muscle slow fiber (MyHC-I) content varies across muscles and taxa and is one of the traits that distinguishes humans from other apes, yet no study to date has compiled this interspecific data into a single, usable format. Thus, the goal of this study was to collate mammalian skeletal muscle slow fiber composition data from published, peer-reviewed articles into a single, open-access Excel sheet for interspecific comparison and analysis (as in Queeno et al., 2023). A systematic literature search and review was conducted between June 1 2021 and November 30 2022 following a structure similar to PRISMA. Terms relating to mammalian skeletal muscle fiber composition were queried using academic search systems (e.g. Google Scholar) and library databases for relevant primary articles. Reference lists in relevant articles were thoroughly investigated for eligible studies. In total, 269 primary articles were deemed eligible for inclusion in the meta-analysis (i.e. these studies provided skeletal muscle fiber composition data from mammalian species that were not subjected to experimental manipulations). Relevant metadata (e.g. taxonomic information, sex, age, fiber-typing methodology, average body mass, and average percent slow fiber content) was then extracted from the text, figures, tables, and supplementary materials of eligible studies when available. Muscle fiber composition data was collected from more than 200 skeletal muscles across 174 mammalian species, which will be of immense value to those interested in muscle physiology, interspecific muscle comparisons, and connections between muscle physiology, taxonomy, body mass, ecomorphology and locomotor strategy (among others). These data highlight certain species, taxonomic orders, and muscles for which fiber composition data is lacking and needs investigation. Hopefully, these data will spark interest in gathering muscle fiber composition data from underrepresented species and muscles, and generate interest in pursuing questions relating to muscle physiology and evolution, as well as analyses based on interspecific datasets. 
    more » « less
  2. Humans are unique among terrestrial mammals in our manner of walking and running, reflecting 7 to 8 Ma of musculoskeletal evolution since diverging with the genus Pan. One component of this is a shift in our skeletal muscle biology towards a predominance of myosin heavy chain (MyHC) I isoforms (i.e. slow fibers) across our pelvis and lower limbs, which distinguishes us from chimpanzees. Here, new MyHC data from 35 pelvis and hind limb muscles of a Western gorilla (Gorilla gorilla) are presented. These data are combined with a similar chimpanzee dataset to assess the MyHC I content of humans in comparison to African apes (chimpanzees and gorillas) and other terrestrial mammals. The responsiveness of human skeletal muscle to behavioral interventions is also compared to the human-African ape differential. Humans are distinct from African apes and among a small group of terrestrial mammals whose pelvis and lower limb muscle is slow fiber dominant, on average. Behavioral interventions, including immobilization, bed rest, spaceflight and exercise, can induce modest decreases and increases in human MyHC I content (i.e. -9.3% to 2.3%, n = 2033 subjects), but these shifts are much smaller than the mean human-African ape differential (i.e. 31%). Taken together, these results indicate muscle fiber content is likely an evolvable trait under selection in the hominin lineage. As such, we highlight potential targets of selection in the genome (e.g. regions that regulate MyHC content) that may play an important role in hominin skeletal muscle evolution. 
    more » « less
  3. null (Ed.)
    Abstract Background Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. Results EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. Conclusions The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization. 
    more » « less
  4. Abstract Measurements of fecal pellet size can provide important information about wild mammals, such as body size and demographic information. Previous studies have not rigorously tested whether diet can confound these measurements. Furthermore, it is unknown whether diet might alter fecal dimensions directly or through changes in animal physiology. Here, we studied three closely related rodent species that differ in natural feeding strategies. Individuals were fed diets that varied in protein and fiber content for 5 weeks. We then measured body size, fecal widths and lengths, and the radius of the large intestine. Diet composition significantly changed fecal widths in all species. High-fiber content significantly increased fecal widths and would cause overestimations of body size if applied to wild feces. Using path analysis, we found that fiber can increase fecal widths both directly and indirectly through increasing the large intestine radius. Protein affected each species differently, suggesting that protein effects vary by species feeding strategy and existing physiology. Overall, diet and large intestine morphology can alter fecal pellet measurements. Studies using fecal measurements therefore must consider these effects in their conclusions. 
    more » « less
  5. Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefishAstyanax mexicanus,has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression ofpparγ—the master regulator of adipogenesis—with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism. 
    more » « less