skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Computational algorithm that enables synergetic phase compensation and automatic focusing for off-axis Digital Holographic Microscopy operating in telecentric mode
We have developed a joint phase compensation and autofocusing method for telecentric off-axis Digital Holographic Microscopy (DHM), providing in-focus reconstructed phase images without phase distortions.  more » « less
Award ID(s):
2042563
PAR ID:
10487549
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optica Publishing Group
Date Published:
Journal Name:
Optica Imaging Congress (3D, COSI, DH, FLatOptics, IS, pcAOP)
ISBN:
978-1-957171-28-9
Page Range / eLocation ID:
DTu3A.5
Format(s):
Medium: X
Location:
Boston, Massachusetts
Sponsoring Org:
National Science Foundation
More Like this
  1. The local temperature solution near the triple-phase line of a solidifying front, its melt, and a surrounding inert phase was obtained analytically including all three phases and solidification kinetics. This analytical solution was validated using a three-phase numerical model of the horizontal ribbon growth of silicon and compared to a two-phase analysis that models the effect of the third phase (e.g. the gas) as an applied heat flux. Although the three-phase solutions have additional modes to represent the gas behavior, for many conditions the two-phase and three-phase models predicted consistent behaviors. However, introduction of a non-zero growth angle causes the gas phase heat fluxes to have strong gradients near the triple-phase line. Even with zero growth angle, there are conditions in which the two-phase and three-phase solutions are very different; one predicting infinite heat fluxes while the other predicts finite fluxes. This depended on the ratios of thermal conductivities, and the angle at which the solid-melt interface intersected the free surface. In particular, when the thermal conductivity of the inert phase was comparable to the melt or solid phases there were significant differences. 
    more » « less
  2. Four inter-related measures of phase are described to study the phase synchronization of cellular oscillators, and computation of these measures is described and illustrated on single cell fluorescence data from the model filamentous fungus, Neurospora crassa. One of these four measures is the phase shift ϕ in a sinusoid of the form x(t) = A(cos(ωt + ϕ), where t is time. The other measures arise by creating a replica of the periodic process x(t) called the Hilbert transform x̃(t), which is 90 degrees out of phase with the original process x(t). The second phase measure is the phase angle FH(t) between the replica x̃(t) and X(t), taking values between -π and π. At extreme values the Hilbert Phase is discontinuous, and a continuous form FC(t) of the Hilbert Phase is used, measuring time on the nonnegative real axis (t). The continuous Hilbert Phase FC(t) is used to define the phase MC(t1,t0) for an experiment beginning at time t0 and ending at time t1. In that phase differences at time t0 are often of ancillary interest, the Hilbert Phase FC(t0) is subtracted from FC(t1). This difference is divided by 2π to obtain the phase MC(t1,t0) in cycles. Both the Hilbert Phase FC(t) and the phase MC(t1,t0) are functions of time and useful in studying when oscillators phase-synchronize in time in signal processing and circadian rhythms in particular. The phase of cellular clocks is fundamentally different from circadian clocks at the macroscopic scale because there is an hourly cycle superimposed on the circadian cycle. 
    more » « less
  3. Solid carbon dioxide exhibits a rich phase diagram at high pressures. Metastable phase III is formed by compressing dry ice above ∼10–12 GPa. Phase VII occurs at similar pressures but higher temperatures, and its stability region is disconnected from III on the phase diagram. Comparison of large-basis-set quasi-harmonic second-order Møller–Plesset perturbation theory calculations and experiment suggests that the long-accepted structure of phase III is problematic. The experimental phase III and VII structures both relax to the same phase VII structure. Furthermore, Raman spectra predicted for phase VII are in good agreement with those observed experimentally for both phase III and VII, while those for the purported phase III structure agree poorly with experimental observations. Crystal structure prediction is employed to search for other potential structures which might account for phase III, but none are found. Together, these results suggest that phases III and VII are likely identical. 
    more » « less
  4. Abstract This paper develops uniqueness theory for 3D phase retrieval with finite, discrete measurement data for strong phase objects and weak phase objects, including: (i)Unique determination of (phase) projections from diffraction patterns—General measurement schemes with coded and uncoded apertures are proposed and shown to ensure unique reduction of diffraction patterns to the phase projection for a strong phase object (respectively, the projection for a weak phase object) in each direction separately without the knowledge of relative orientations and locations. (ii)Uniqueness for 3D phase unwrapping—General conditions for unique determination of a 3D strong phase object from its phase projection data are established, including, but not limited to, random tilt schemes densely sampled from a spherical triangle of vertexes in three orthogonal directions and other deterministic tilt schemes. (iii)Uniqueness for projection tomography—Unique 
    more » « less
  5. Isomerization, the process by which a molecule is coherently transformed into another molecule with the same molecular formula but a different atomic structure, is an important and well-known phenomenon of organic chemistry, but has only recently been observed for inorganic nanoclusters. Previously, CdS nanoclusters were found to isomerize between two end point structures rapidly and reversibly (the α-phase and β-phase), mediated by hydroxyl groups on the surface. This observation raised many significant structural and pathway questions. One critical question is why no intermediate states were observed during the isomerization; it is not obvious why an atomic cluster should only have two stable end points rather than multiple intermediate arrangements. In this study, we report that the use of amide functional groups can stabilize intermediate phases during the transformation of CdS magic-size clusters between the α-phase and the β-phase. When treated with amides in organic solvents, the amides not only facilitate the α-phase to β-phase isomerization but also exhibit three distinct excitonic features, which we call the β340-phase, β350-phase, and β367-phase. Based on pair distribution function analysis, these intermediates strongly resemble the β-phase structure but deviate greatly from the α-phase structure. All phases (β340-phase, β350-phase, and β367-phase) have nearly identical structures to the β-phase, with the β340-phase having the largest deviation. Despite these intermediates having similar atomic structures, they have up to a 583 meV difference in band gap compared to the β-phase. Kinetic studies show that the isomers and intermediates follow a traditional progression in the thermodynamic stability of β340-phase/β350-phase < α-phase < β367-phase < β-phase. The solvent identity and polarity play a crucial role in kinetically arresting these intermediates. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy studies paired with simple density functional theory calculations reveal that the likely mechanism is due to the multifunctional nature of the amides that form an amphoteric surface binding bond motif, which promotes a change in the carboxylic acid binding mode. This change from chelating binding modes to bridging binding modes initiates the isomerization. We propose that the carbonyl group is responsible for the direct interaction with the surface, acting as an L-type ligand which then pulls electron density away from the electron-poor nitrogen site, enabling them to interact with the carboxylate ligands and initiate the change in the binding mode. The isomerization of CdS nanoclusters continues to be a topic of interest, giving insight into fundamental nanoscale chemistry and physics. 
    more » « less