skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of monolayer viscosity in Langmuir film hole closure dynamics
We re-examine the model proposed by Alexanderet al.(Phys. Fluids, vol. 18, 2006, 062103) for the closing of a circular hole in a molecularly thin incompressible Langmuir film situated on a Stokesian subfluid. For simplicity their model assumes that the surface phase is inviscid which leads to the result that the cavity area decreases at a constant rate determined by the ratio of edge tension to subfluid viscosity. We reformulate the problem, allowing for a regularising monolayer viscosity. The viscosity-dependent corrections to the hole dynamics are analysed and found to be non-trivial, even when the monolayer viscosity is small; these corrections may explain the departure of experimental data from the theoretical prediction when the hole radius becomes comparable to the Saffman–Delbrück length. Through fitting, under these relaxed assumptions, we find the edge tension could be as much as six times larger ($$\sim$$4.0 pN) than reported previously.  more » « less
Award ID(s):
2004469
PAR ID:
10487646
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
948
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Free surface flows driven by boundary undulations are observed in many biological phenomena, including the feeding and locomotion of water snails. To simulate the feeding strategy of apple snails, we develop a centimetric robotic undulator that drives a thin viscous film of liquid with the wave speed$$V_w$$. Our experimental results demonstrate that the behaviour of the net fluid flux$$Q$$strongly depends on the Reynolds number$$Re$$. Specifically, in the limit of vanishing$$Re$$, we observe that$$Q$$varies non-monotonically with$$V_w$$, which has been successfully rationalised by Pandeyet al.(Nat. Commun., vol. 14, no. 1, 2023, p. 7735) with the lubrication model. By contrast, in the regime of finite inertia ($${Re} \sim O(1)$$), the fluid flux continues to increase with$$V_w$$and completely deviates from the prediction of lubrication theory. To explain the inertia-enhanced pumping rate, we build a thin-film, two-dimensional model via the asymptotic expansion in which we linearise the effects of inertia. Our model results match the experimental data with no fitting parameters and also show the connection to the corresponding free surface shapes$$h_2$$. Going beyond the experimental data, we derive analytical expressions of$$Q$$and$$h_2$$, which allow us to decouple the effects of inertia, gravity, viscosity and surface tension on free surface pumping over a wide range of parameter space. 
    more » « less
  2. Abstract We determine the order of thek-core in a large class of dense graph sequences. Let$$G_n$$be a sequence of undirected,n-vertex graphs with edge weights$$\{a^n_{i,j}\}_{i,j \in [n]}$$that converges to a graphon$$W\colon[0,1]^2 \to [0,+\infty)$$in the cut metric. Keeping an edge (i,j) of$$G_n$$with probability$${a^n_{i,j}}/{n}$$independently, we obtain a sequence of random graphs$$G_n({1}/{n})$$. Using a branching process and the theory of dense graph limits, under mild assumptions we obtain the order of thek-core of random graphs$$G_n({1}/{n})$$. Our result can also be used to obtain the threshold of appearance of ak-core of ordern. 
    more » « less
  3. Dynamic stall at low Reynolds numbers,$$Re \sim O(10^4)$$, exhibits complex flow physics with co-existing laminar, transitional and turbulent flow regions. Current state-of-the-art stall onset criteria use parameters that rely on flow properties integrated around the leading edge. These include the leading edge suction parameter or$$LESP$$(Rameshet al.,J. Fluid Mech., vol. 751, 2014, pp. 500–538) and boundary enstrophy flux or$$BEF$$(Sudharsanet al.,J. Fluid Mech., vol. 935, 2022, A10), which have been found to be effective for predicting stall onset at moderate to high$$Re$$. However, low-$$Re$$flows feature strong vortex-shedding events occurring across the entire airfoil surface, including regions away from the leading edge, altering the flow field and influencing the onset of stall. In the present work, the ability of these stall criteria to effectively capture and localize these vortex-shedding events in space and time is investigated. High-resolution large-eddy simulations for an SD7003 airfoil undergoing a constant-rate, pitch-up motion at two$$Re$$(10 000 and 60 000) and two pitch rates reveal a rich variety of unsteady flow phenomena, including instabilities, transition, vortex formation, merging and shedding, which are described in detail. While stall onset is reflected in both$$LESP$$and$$BEF$$, local vortex-shedding events are identified only by the$$BEF$$. Therefore,$$BEF$$can be used to identify both dynamic stall onset and local vortex-shedding events in space and time. 
    more » « less
  4. The motion and deformation of a neutrally buoyant drop in a rectangular channel experiencing a pressure-driven flow at a low Reynolds number has been investigated both experimentally and numerically. A moving-frame boundary-integral algorithm was used to simulate the drop dynamics, with a focus on steady-state drop velocity and deformation. Results are presented for drops of varying undeformed diameters relative to channel height ($$D/H$$), drop-to-bulk viscosity ratio ($$\lambda$$), capillary number ($$Ca$$, ratio of deforming viscous forces to shape-preserving interfacial tension) and initial position in the channel in a parameter space larger than considered previously. The general trend shows that the drop steady-state velocity decreases with increasing drop diameter and viscosity ratio but increases with increasing$$Ca$$. An opposite trend is seen for drops with small viscosity ratio, however, where the steady-state velocity increases with increasing$$D/H$$and can exceed the maximum background flow velocity. Experimental results verify theoretical predictions. A deformable drop with a size comparable to the channel height when placed off centre migrates towards the centreline and attains a steady state there. In general, a drop with a low viscosity ratio and high capillary number experiences faster cross-stream migration. With increasing aspect ratio, there is a competition between the effect of reduced wall interactions and lower maximum channel centreline velocity at fixed average velocity, with the former helping drops attain higher steady-state velocities at low aspect ratios, but the latter takes over at aspect ratios above approximately 1.5. 
    more » « less
  5. The motion of a disk in a Langmuir film bounding a liquid substrate is a classical hydrodynamic problem, dating back to Saffman (J. Fluid Mech., vol. 73, 1976, p. 593) who focused upon the singular problem of translation at large Boussinesq number,$${\textit {Bq}}\gg 1$$. A semianalytic solution of the dual integral equations governing the flow at arbitrary$${\textit {Bq}}$$was devised by Hugheset al.(J. Fluid Mech., vol. 110, 1981, p. 349). When degenerated to the inviscid-film limit$${\textit {Bq}}\to 0$$, it produces the value$$8$$for the dimensionless translational drag, which is$$50\,\%$$larger than the classical$$16/3$$-value corresponding to a free surface. While that enhancement has been attributed to surface incompressibility, the mathematical reasoning underlying the anomaly has never been fully elucidated. Here we address the inviscid limit$${\textit {Bq}}\to 0$$from the outset, revealing a singular mechanism where half of the drag is contributed by the surface pressure. We proceed beyond that limit, considering a nearly inviscid film. A naïve attempt to calculate the drag correction using the reciprocal theorem fails due to an edge singularity of the leading-order flow. We identify the formation of a boundary layer about the edge of the disk, where the flow is primarily in the azimuthal direction with surface and substrate stresses being asymptotically comparable. Utilising the reciprocal theorem in a fluid domain tailored to the asymptotic topology of the problem produces the drag correction$$(8\,{\textit {Bq}}/{\rm \pi} ) [ \ln (2/{\textit {Bq}}) + \gamma _E+1]$$,$$\gamma _E$$being the Euler–Mascheroni constant. 
    more » « less