skip to main content


Search for: All records

Award ID contains: 2004469

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ensembles of particles rotating in a two-dimensional fluid can exhibit chaotic dynamics yet develop signatures of hidden order. Such rotors are found in the natural world spanning vastly disparate length scales — from the rotor proteins in cellular membranes to models of atmospheric dynamics. Here we show that an initially random distribution of either driven rotors in a viscous membrane, or ideal vortices with minute perturbations, spontaneously self assemble into a distinct arrangement. Despite arising from drastically different physics, these systems share a Hamiltonian structure that sets geometrical conservation laws resulting in prominent structural states. We find that the rotationally invariant interactions isotropically suppress long-wavelength fluctuations — a hallmark of a disordered hyperuniform material. With increasing area fraction, the system orders into a hexagonal lattice. In mixtures of two co-rotating populations, the stronger population will gain order from the other and both will become phase enriched. Finally, we show that classical 2D point vortex systems arise as exact limits of the experimentally accessible microscopic membrane rotors, yielding a new system through which to study topological defects.

     
    more » « less
  2. Free, publicly-accessible full text available January 25, 2025
  3. Free, publicly-accessible full text available January 1, 2025
  4. Free, publicly-accessible full text available January 1, 2025
  5. We provide a direct derivation of the typical time derivatives used in a continuum description of complex fluid flows, relying on principles of the kinematics of line elements.

     
    more » « less
    Free, publicly-accessible full text available July 19, 2024
  6. Free, publicly-accessible full text available June 1, 2024
  7. Inspired by the recent realization of a two-dimensional (2-D) chiral fluid as an active monolayer droplet moving atop a 3-D Stokesian fluid, we formulate mathematically its free-boundary dynamics. The surface droplet is described as a general 2-D linear, incompressible and isotropic fluid, having a viscous shear stress, an active chiral driving stress and a Hall stress allowed by the lack of time-reversal symmetry. The droplet interacts with itself through its driven internal mechanics and by driving flows in the underlying 3-D Stokes phase. We pose the dynamics as the solution to a singular integral–differential equation, over the droplet surface, using the mapping from surface stress to surface velocity for the 3-D Stokes equations. Specializing to the case of axisymmetric droplets, exact representations for the chiral surface flow are given in terms of solutions to a singular integral equation, solved using both analytical and numerical techniques. For a disc-shaped monolayer, we additionally employ a semi-analytical solution that hinges on an orthogonal basis of Bessel functions and allows for efficient computation of the monolayer velocity field, which ranges from a nearly solid-body rotation to a unidirectional edge current, depending on the subphase depth and the Saffman–Delbrück length. Except in the near-wall limit, these solutions have divergent surface shear stresses at droplet boundaries, a signature of systems with codimension-one domains embedded in a 3-D medium. We further investigate the effect of a Hall viscosity, which couples radial and transverse surface velocity components, on the dynamics of a closing cavity. Hall stresses are seen to drive inward radial motion, even in the absence of edge tension. 
    more » « less
  8. We re-examine the model proposed by Alexanderet al.(Phys. Fluids, vol. 18, 2006, 062103) for the closing of a circular hole in a molecularly thin incompressible Langmuir film situated on a Stokesian subfluid. For simplicity their model assumes that the surface phase is inviscid which leads to the result that the cavity area decreases at a constant rate determined by the ratio of edge tension to subfluid viscosity. We reformulate the problem, allowing for a regularising monolayer viscosity. The viscosity-dependent corrections to the hole dynamics are analysed and found to be non-trivial, even when the monolayer viscosity is small; these corrections may explain the departure of experimental data from the theoretical prediction when the hole radius becomes comparable to the Saffman–Delbrück length. Through fitting, under these relaxed assumptions, we find the edge tension could be as much as six times larger ($\sim$4.0 pN) than reported previously.

     
    more » « less